首页> 外文OA文献 >LoCaTe: Influence Quantification for Location Promotion in Location-based Social Networks
【2h】

LoCaTe: Influence Quantification for Location Promotion in Location-based Social Networks

机译:位置:基于位置的社交网络中位置促进的影响量化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Location-based social networks (LBSNs) such as Foursquare offer a platform for users to share and be aware of each other’s physical movements. Asa result of such a sharing of check-in information with each other, users can be influenced to visit (or check-in) at the locations visited by their friends. Quantifying such influences in these LBSNs is useful in various settings such as location promotion, personalized recommendations, mobility pattern prediction etc. In this paper, we focus on the problem of location promotion and develop a model to quantify the influence specific to a lo- cation between a pair of users. Specifically,we develop a joint model called LoCaTe, consisting of (i) user mobility model estimated using kernel density estimates; (ii) a model of the semantics of the location using topic models; and (iii) a modelof time-gap between check-ins using exponential distribution. We validate our model on a long term crawl of Foursquare data collected between Jan 2015 Feb 2016, as well as on publicly available LBSN datasets. Our experiments demonstrate that LoCaTe significantly outperforms state-of-theartmodels for the same task.
机译:诸如Foursquare之类的基于位置的社交网络(LBSN)为用户提供了一个共享和了解彼此的身体运动的平台。作为彼此共享签到信息的结果,可以影响用户在其朋友所访问的位置访问(或签到)。量化在这些LBSN中的这种影响在诸如位置提升,个性化推荐,移动性模式预测等各种设置中很有用。在本文中,我们着重于位置提升的问题,并开发了一个模型来量化针对特定位置的影响在一对用户之间。具体来说,我们开发了一个称为LoCaTe的联合模型,该模型包括:(i)使用内核密度估算值估算的用户移动性模型; (ii)使用主题模型的位置语义模型; (iii)使用指数分布的签到之间的时间间隔模型。我们在2015年1月2016年2月之间收集的Foursquare数据的长期爬网以及公开可用的LBSN数据集上验证了我们的模型。我们的实验表明,对于相同的任务,LocaTe的性能明显优于最新模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号