首页> 外文期刊>ACM transactions on knowledge discovery from data >Measuring Temporal Patterns in Dynamic Social Networks
【24h】

Measuring Temporal Patterns in Dynamic Social Networks

机译:测量动态社交网络中的时间模式

获取原文
获取原文并翻译 | 示例

摘要

Given social networks over time, how can we measure network activities across different timesteps with a limited number of metrics? We propose two classes of dynamic metrics for assessing temporal evolution patterns of agents in terms of persistency and emergence. For each class of dynamic metrics, we implement it using three different temporal aggregation models ranging from the most commonly used Average Aggregation Model to more the complex models such as the Exponential Aggregation Model. We argue that the problem of measuring temporal patterns can be formulated using Recency and Primacy effect, which is a concept used to characterize human cognitive processes. Experimental results show that the way metrics model Recency-Primacy effect is closely related to their abilities to measure temporal patterns. Furthermore, our results indicate that future network agent activities can be predicted based on history information using dynamic metrics. By conducting multiple experiments, we are also able to find an optimal length of history information that is most relevant to future activities. This optimal length is highly consistent within a dataset and can be used as an intrinsic metric to evaluate a dynamic social network.
机译:给定社交网络随着时间的推移,我们如何使用数量有限的指标来衡量不同时间步长的网络活动?我们提出了两类动态度量,用于根据持久性和出现性来评估代理的时间演化模式。对于每类动态指标,我们使用三种不同的时间聚合模型来实现它,从最常用的平均聚合模型到更复杂的模型(例如指数聚合模型)。我们认为,可以使用新近度和优先度效应来表述测量时间模式的问题,这是用来表征人类认知过程的概念。实验结果表明,度量模型的新近度-原始效果的方式与其度量时间模式的能力密切相关。此外,我们的结果表明,可以使用动态指标基于历史信息来预测未来的网络代理活动。通过进行多次实验,我们还能够找到与未来活动最相关的最佳历史信息长度。该最佳长度在数据集中高度一致,可以用作评估动态社交网络的内在指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号