首页> 外文期刊>ACM transactions on knowledge discovery from data >Representation Learning for Classification in Heterogeneous Graphs with Application to Social Networks
【24h】

Representation Learning for Classification in Heterogeneous Graphs with Application to Social Networks

机译:异构图中分类的表示学习及其在社交网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

We address the task of node classification in heterogeneous networks, where the nodes are of different types, each type having its own set of labels, and the relations between nodes may also be of different types. A typical example is provided by social networks where node types may for example be users, content, or films, and relations friendship, like, authorship. Learning and performing inference on such heterogeneous networks is a recent task requiring new models and algorithms. We propose a model, Labeling Heterogeneous Network (LaHNet), a transductive approach to classification that learns to project the different types of nodes into a common latent space. This embedding is learned so as to reflect different characteristics of the problem such as the correlation between node labels, as well as the graph topology. The application focus is on social graphs, but the algorithm is general and can be used for other domains. The model is evaluated on five datasets representative of different instances of social data.
机译:我们解决了异构网络中节点分类的任务,其中节点是不同类型的,每种类型都有自己的标签集,并且节点之间的关系也可能是不同类型。社交网络提供了一个典型示例,其中节点类型例如可以是用户,内容或电影,以及关系友谊(例如作者身份)。在这样的异构网络上学习和执行推理是一项需要新模型和算法的近期任务。我们提出了一个模型,即标签异构网络(LaHNet),这是一种分类的转导方法,可学习将不同类型的节点投影到一个共同的潜在空间中。学习该嵌入是为了反映问题的不同特征,例如节点标签之间的相关性以及图拓扑。应用程序的重点是社交图,但是该算法是通用的,可以用于其他领域。该模型在代表社会数据不同实例的五个数据集上进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号