首页> 外文期刊>ACM transactions on knowledge discovery from data >Coordination Event Detection and Initiator Identification in Time Series Data
【24h】

Coordination Event Detection and Initiator Identification in Time Series Data

机译:时间序列数据中的协调事件检测和启动程序标识

获取原文
获取原文并翻译 | 示例

摘要

Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the COORDINATION INITIATOR INFERENCE PROBLEM and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.
机译:行为发起是领导的一种形式,是社会组织的重要方面,它影响人类社会和其他社会动物物种的群体形成,动力和决策过程。在这项工作中,我们正式确定了协调发起人推论问题,并提出了一个简单而强大的框架,用于提取协调活动的时间段,并仅根据组内个体在此期间的活动来确定发起这种协调的个体。在给定任意单个时间序列的情况下,建议的方法自动(1)识别协调的小组活动的时间;(2)确定那些活动的发起者的身份;(3)分类发生小组协调的可能机制,所有这是新颖的计算任务。我们将在模拟和真实数据上展示我们的框架:追踪动物的轨迹以及股市数据。我们的方法与现有的全球领导力推断方法相比具有竞争优势,但为本地领导力和协调机制分类提供了第一种方法。我们的结果与真实的生物数据一致,并且该框架发现了财务数据中的许多已知事件,而这些事件在其他纳斯达克指数中并未得到反映。我们的方法很容易推广到来自交互实体的任何协调时间序列数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号