首页> 外文期刊>ACM transactions on knowledge discovery from data >FrauDetector~+: An Incremental Graph-Mining Approach for Efficient Fraudulent Phone Call Detection
【24h】

FrauDetector~+: An Incremental Graph-Mining Approach for Efficient Fraudulent Phone Call Detection

机译:FrauDetector〜+:一种有效的欺诈性电话检测的增量图挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, telecommunication fraud has become more rampant internationally with the development of modern technology and global communication. Because of rapid growth in the volume of call logs, the task of fraudulent phone call detection is confronted with big data issues in real-world implementations. Although our previous work, FrauDetector, addressed this problem and achieved some promising results, it can be further enhanced because it focuses only on fraud detection accuracy, whereas the efficiency and scalability are not top priorities. Other known approaches for fraudulent call number detection suffer from long training times or cannot accurately detect fraudulent phone calls in real time. However, the learning process of FrauDetector is too time-consuming to support real-world application. Although we have attempted to accelerate the the learning process of FrauDetector by parallelization, the parallelized learning process, namely PFrauDetector, still cannot afford the computing cost. In this article, we propose a highly efficient incremental graph-mining-based fraudulent phone call detection approach, namely FrauDetectoe , which can automatically label fraudulent phone numbers with a "fraud" tag a crucial prerequisite for distinguishing fraudulent phone call numbers from nonfraudulent ones. FratiDetectoe initially generates smaller, more manageable subnetworks from original graph and performs a parallelized weighted HITS algorithm for a significant speed increase in the graph learning module. It adopts a novel aggregation approach to generate a trust (or experience) value for each phone number (or user) based on their respective local values. After the initial procedure, we can incrementally update the trust (or experience) value for each phone number (or user) while a new fraud phone number is identified. An efficient fraud-centric hash structure is constructed to support fast real-time detection of fraudulent phone numbers in the detection module. We conduct a comprehensive experimental study based on real datasets collected through an antifraud mobile application called Whoscall. The results demonstrate a significantly improved efficiency of our approach compared with FrauDetector as well as superior performance against other major classifier-based methods.
机译:近年来,随着现代技术和全球通讯的发展,国际上的电信欺诈现象更加猖ramp。由于呼叫日志数量的快速增长,在实际的实现中,欺诈性电话检测的任务面临着大数据问题。尽管我们之前的工作FrauDetector解决了这个问题并取得了一些可喜的成果,但由于它仅专注于欺诈检测的准确性,而效率和可伸缩性并不是重中之重,因此可以进一步增强它。用于欺诈性电话号码检测的其他已知方法遭受了较长的训练时间或无法实时准确地检测欺诈性电话。但是,FrauDetector的学习过程非常耗时,无法支持实际应用。尽管我们试图通过并行化来加快FrauDetector的学习过程,但是并行化的学习过程PFrauDetector仍然无法承担计算成本。在本文中,我们提出了一种高效的基于增量图挖掘的欺诈性电话检测方法,即FrauDetectoe,该方法可以自动使用“欺诈”标签标记欺诈性电话号码,这是区分欺诈性电话号码与非欺诈性电话号码的关键前提。那些。 FratiDetectoe最初从原始图形生成较小的,更易于管理的子网,并执行并行加权HITS算法,以显着提高图形学习模块的速度。它采用一种新颖的汇总方法来根据每个电话号码(或用户)各自的本地值生成信任(或体验)值。完成初始过程后,我们可以在识别新的欺诈电话号码的同时,逐步更新每个电话号码(或用户)的信任(或体验)值。构建有效的以欺诈为中心的哈希结构,以支持在检测模块中快速实时检测欺诈性电话号码。我们基于通过名为Whoscall的反欺诈移动应用程序收集的真实数据集进行了全面的实验研究。结果表明,与FrauDetector相比,我们的方法效率显着提高,并且相对于其他基于主要分类器的方法,其性能也更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号