首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Making Decisions about Privacy: Information Disclosure in Context-Aware Recommender Systems
【24h】

Making Decisions about Privacy: Information Disclosure in Context-Aware Recommender Systems

机译:做出有关隐私的决策:情境感知推荐系统中的信息披露

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems increasingly use contextual and demographical data as a basis for recommendations. Users, however, often feel uncomfortable providing such information. In a privacy-minded design of recommenders, users are free to decide for themselves what data they want to disclose about themselves. But this decision is often complex and burdensome, because the consequences of disclosing personal information are uncertain or even unknown. Although a number of researchers have tried to analyze and facilitate such information disclosure decisions, their research results are fragmented, and they often do not hold up well across studies. This article describes a unified approach to privacy decision research that describes the cognitive processes involved in users' "privacy calculus" in terms of system-related perceptions and experiences that act as mediating factors to information disclosure. The approach is applied in an online experiment with 493 participants using a mock-up of a context-aware recommender system. Analyzing the results with a structural linear model, we demonstrate that personal privacy concerns and disclosure justification messages affect the perception of and experience with a system, which in turn drive information disclosure decisions. Overall, disclosure justification messages do not increase disclosure. Although they are perceived to be valuable, they decrease users' trust and satisfaction. Another result is that manipulating the order of the requests increases the disclosure of items requested early but decreases the disclosure of items requested later.
机译:推荐系统越来越多地使用上下文和人口统计数据作为建议的基础。但是,用户经常感到不舒服,无法提供此类信息。在具有隐私性的推荐器设计中,用户可以自由决定要公开哪些数据。但是,此决定通常是复杂且繁琐的,因为公开个人信息的后果是不确定的,甚至是未知的。尽管许多研究人员试图分析和促进此类信息披露决策,但是他们的研究结果是零散的,并且在整个研究过程中往往表现不佳。本文介绍了一种用于隐私决策研究的统一方法,该方法根据与系统有关的感知和经验来描述用户“隐私演算”中涉及的认知过程,这些感知过程和经验是信息披露的中介因素。该方法在493名参与者的在线实验中使用了上下文感知推荐系统的模型。使用结构线性模型分析结果,我们证明个人隐私问题和披露正当性消息会影响系统的感知和体验,进而推动信息披露决策。总体而言,公开证明消息不会增加公开性。尽管它们被认为是有价值的,但它们会降低用户的信任度和满意度。另一个结果是,处理请求的顺序会增加早期请求的项目的披露,但会减少后期请求的项目的披露。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号