首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Generating and Understanding Personalized Explanations in Hybrid Recommender Systems
【24h】

Generating and Understanding Personalized Explanations in Hybrid Recommender Systems

机译:在混合推荐系统中生成和了解个性化解释

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are ubiquitous and shape the way users access information and make decisions. As these systems become more complex, there is a growing need for transparency and interpretability. hi this article, we study the problem of generating and visualizing personalized explanations for recommender systems that incorporate signals from many different data sources. We use a flexible, extendable probabilistic programming approach and show how we can generate real-time personalized recommendations. We then turn these personalized recommendations into explanations. We perform an extensive user study to evaluate the benefits of explanations for hybrid recommender systems. We conduct a crowd-sourced user study where our system generates personalized recommendations and explanations for real users of the last.fm music platform. First, we evaluate the performance of the recommendations in terms of perceived accuracy and novelty. Next, we experiment with (1) different explanation styles (e.g., user-based, item-based), (2) manipulating the number of explanation styles presented, and (3) manipulating the presentation format (e.g., textual vs. visual). We also apply a mixed-model statistical analysis to consider user personality traits as a control variable and demonstrate the usefulness of our approach in creating personalized hybrid explanations with different style, number, and format. Finally, we perform a post analysis that shows different preferences for explanation styles between experienced and novice last.fm users.
机译:推荐系统普遍存在,塑造用户访问信息和做出决策的方式。随着这些系统变得更加复杂,越来越需要透明度和可解释性。在这篇文章中,我们研究了为包含来自许多不同数据源的信号的推荐系统生成和可视化个性化解释的问题。我们使用灵活,可扩展的概率编程方法,并展示我们如何生成实时个性化建议。然后,我们将这些个性化的建议称为解释。我们执行广泛的用户学习,以评估混合推荐系统的解释的好处。我们开展人群源用户学习,我们的系统为Last.fm音乐平台的真实用户生成个性化建议和解释。首先,我们在感知的准确性和新奇方面评估建议的履行。接下来,我们尝试(1)不同的解释样式(例如,基于用户的项目),(2)操纵所呈现的说明样式的数量,并且(3)操纵呈现格式(例如,文本与Visual) 。我们还应用混合模型统计分析,以将用户人格特征视为控制变量,并展示我们在创建具有不同风格,数字和格式的个性化混合解释时的方法的有用性。最后,我们执行一个帖子分析,显示出于经验丰富的和新手之间的解释样式的不同偏好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号