首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >HILC: Domain-Independent PbD System Via Computer Vision and Follow-Up Questions
【24h】

HILC: Domain-Independent PbD System Via Computer Vision and Follow-Up Questions

机译:HILC:通过计算机视觉和后续问题实现与域无关的PbD系统

获取原文
获取原文并翻译 | 示例

摘要

Creating automation scripts for tasks involving Graphical User Interface (GUI) interactions is hard. It is challenging because not all software applications allow access to a program's internal state, nor do they all have accessibility APIs. Although much of the internal state is exposed to the user through the GUI, it is hard to programmatically operate the GUI's widgets. To that end, we developed a system prototype that learns by demonstration, called HILC (Help, It Looks Confusing). Users, both programmers and non-programmers, train HTLC to synthesize a task script by demonstrating the task. A demonstration produces the needed screenshots and their corresponding mouse-keyboard signals. After the demonstration, the user answers follow-up questions. We propose a user-in-the-loop framework that learns to generate scripts of actions performed on visible elements of graphical applications. Although pure programming by demonstration is still unrealistic due to a computer's limited understanding of user intentions, we use quantitative and qualitative experiments to show that non-programming users are willing and effective at answering follow-up queries posed by our system, to help with confusing parts of the demonstrations. Our models of events and appearances are surprisingly simple but are combined effectively to cope with varying amounts of supervision. The best available baseline, Sikuli Slides, struggled to assist users in the majority of the tests in our user study experiments. The prototype with our proposed approach successfully helped users accomplish simple linear tasks, complicated tasks (monitoring, looping, and mixed), and tasks that span across multiple applications. Even when both systems could ultimately perform a task, ours was trained and refined by the user in less time.
机译:为涉及图形用户界面(GUI)交互的任务创建自动化脚本非常困难。之所以具有挑战性,是因为并非所有软件应用程序都允许访问程序的内部状态,也不是它们都具有可访问性API。尽管许多内部状态是通过GUI向用户公开的,但是很难以编程方式操作GUI的小部件。为此,我们开发了一个通过演示学习的系统原型,称为HILC(帮助,看起来令人困惑)。不论是程序员还是非程序员用户,都通过演示任务来训练HTLC合成任务脚本。演示会产生所需的屏幕截图及其相应的鼠标键盘信号。演示后,用户回答后续问题。我们提出了一个循环中的用户框架,该框架学习生成在图形应用程序的可见元素上执行的动作脚本。尽管由于计算机对用户意图的了解有限,通过演示进行纯编程仍然是不现实的,但是我们使用定量和定性实验来表明非编程用户愿意并且有效地回答了我们系统提出的后续查询,从而有助于避免混淆示威的一部分。我们的事件和外表模型非常简单,但是可以有效地结合起来以应对不同程度的监督。最好的可用基线Sikuli Slides难以在我们的用户研究实验中协助用户进行大多数测试。使用我们提出的方法的原型成功地帮助用户完成了简单的线性任务,复杂的任务(监视,循环和混合)以及跨多个应用程序的任务。即使两个系统最终都可以执行任务,我们的系统也可以在更少的时间内由用户进行培训和完善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号