首页> 外文期刊>ACM transactions on intelligent systems >A Semantic Framework for Intelligent Matchmaking for Clinical Trial Eligibility Criteria
【24h】

A Semantic Framework for Intelligent Matchmaking for Clinical Trial Eligibility Criteria

机译:用于临床试验资格标准的智能配对的语义框架

获取原文
获取原文并翻译 | 示例

摘要

An integral step in the discovery of new treatments for medical conditions is the matching of potential subjects with appropriate clinical trials. Eligibility criteria for clinical trials are typically specified as inclusion and exclusion criteria for each study in freetext form. While this is sufficient for a human to guide a recruitment interview, it cannot be reliably and computationally construed to identify potential subjects. Standardization of the representation of eligibility criteria can enhance the efficiency and accuracy of this process. This article presents a semantic framework that facilitates intelligent matchmaking by identifying a minimal set of eligibility criteria with maximal coverage of clinical trials. In contrast to existing top-down manual standardization efforts, a bottom-up data driven approach is presented to find a canonical nonredundant representation of an arbitrary collection of clinical trial criteria. The methodology has been validated with a corpus of 709 clinical trials related to Generalized Anxiety Disorder containing 2,760 inclusion and 4,871 exclusion eligibility criteria. This corpus is well represented by a relatively small number of 126 inclusion clusters and 175 exclusion clusters, each of which corresponds to a semantically distinct criterion. Internal and external validation measures provide an objective evaluation of the method. An eligibility criteria ontology has been constructed based on the clustering. The resulting model has been incorporated into the development of the MindTrial clinical trial recruiting system. The prototype for clinical trial recruitment illustrates the effectiveness of the methodology in characterizing clinical trials and subjects and accurate matching between them.
机译:在发现新的医学治疗方法中,不可或缺的一步是将潜在受试者与适当的临床试验相匹配。临床试验的资格标准通常以自由文本形式指定为每个研究的纳入和排除标准。虽然这足以指导人员进行招聘面试,但不能可靠地并通过计算将其识别为潜在的对象。资格标准表示的标准化可以提高此过程的效率和准确性。本文介绍了一种语义框架,该框架可通过识别一组具有临床试验最大覆盖范围的合格标准来促进智能配对。与现有的自上而下的手动标准化工作相反,提出了一种自下而上的数据驱动方法,以找到临床试验标准的任意集合的规范非冗余表示形式。该方法论已通过与广泛性焦虑症相关的709项临床试验进行了验证,该试验包含2760名入选者和4871名入选资格标准。该语料库由相对较少的126个包含聚类和175个排除聚类很好地表示,每个聚类对应一个语义上不同的标准。内部和外部验证措施提供了对该方法的客观评估。基于聚类构建了资格标准本体。由此产生的模型已被纳入MindTrial临床试验征募系统的开发中。临床试验招募的原型说明了该方法在表征临床试验和受试者以及它们之间的精确匹配方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号