首页> 外文期刊>ACM transactions on intelligent systems >A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion
【24h】

A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion

机译:基于信息融合的混合多组协同推荐框架

获取原文
获取原文并翻译 | 示例

摘要

Collaborative Filtering (CF) is one of the most successful algorithms in recommender systems. However, it suffers from data sparsity and scalability problems. Although many clustering techniques have been incorporated to alleviate these two problems, most of them fail to achieve further significant improvement in recommendation accuracy. First of all, most of them assume each user or item belongs to a single cluster. Since usually users can hold multiple interests and items may belong to multiple categories, it is more reasonable to assume that users and items can join multiple clusters (groups), where each cluster is a subset of like-minded users and items they prefer. Furthermore, most of the clustering-based CF models only utilize historical rating information in the clustering procedure but ignore other data resources in recommender systems such as the social connections of users and the correlations between items. In this article, we propose HMCoC, a Hybrid Multigroup CoClustering recommendation framework, which can cluster users and items into multiple groups simultaneously with different information resources. In our framework, we first integrate information of user-item rating records, user social networks, and item features extracted from the DBpedia knowledge base. We then use an optimization method to mine meaningful user-item groups with all the information. Finally, we apply the conventional CF method in each cluster to make predictions. By merging the predictions from each cluster, we generate the top-n recommendations to the target users for return. Extensive experimental results demonstrate the superior performance of our approach in top-n recommendation in terms of MAP, NDCG, and F1 compared with other clustering-based CF models.
机译:协作过滤(CF)是推荐系统中最成功的算法之一。但是,它存在数据稀疏性和可伸缩性问题。尽管已经引入了许多聚类技术来缓解这两个问题,但是它们中的大多数都无法在推荐准确性上实现进一步的显着提高。首先,它们中的大多数假定每个用户或项目属于一个集群。由于通常用户可以拥有多个兴趣并且项目可能属于多个类别,因此更合理地假设用户和项目可以加入多个集群(组),其中每个集群都是志趣相投的用户和他们喜欢的项目的子集。此外,大多数基于聚类的CF模型仅在聚类过程中使用历史评级信息,而忽略了推荐系统中的其他数据资源,例如用户的社交关系以及项目之间的相关性。在本文中,我们提出了HMCoC,一种混合​​多组CoClustering推荐框架,该框架可以使用不同的信息资源同时将用户和项目分为多个组。在我们的框架中,我们首先集成用户项目评分记录,用户社交网络以及从DBpedia知识库中提取的项目特征的信息。然后,我们使用一种优化方法来利用所有信息挖掘有意义的用户项组。最后,我们在每个聚类中应用常规CF方法进行预测。通过合并来自每个群集的预测,我们为目标用户生成了前n个建议,以供回报。大量的实验结果表明,与其他基于聚类的CF模型相比,在MAP,NDCG和F1方面,我们的方法在top-n推荐方面具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号