首页> 外文期刊>ACM transactions on intelligent systems >Using the Crowd to Improve Search Result Ranking and the Search Experience
【24h】

Using the Crowd to Improve Search Result Ranking and the Search Experience

机译:使用人群来提高搜索结果排名和搜索体验

获取原文
获取原文并翻译 | 示例

摘要

Despite technological advances, algorithmic search systems still have difficulty with complex or subtle information needs. For example, scenarios requiring deep semantic interpretation are a challenge for computers. People, on the other hand, are well suited to solving such problems. As a result, there is an opportunity for humans and computers to collaborate during the course of a search in a way that takes advantage of the unique abilities of each. While search tools that rely on human intervention will never be able to respond as quickly as current search engines do, recent research suggests that there are scenarios where a search engine could take more time if it resulted in a much better experience. This article explores how crowdsourcing can be used at query time to augment key stages of the search pipeline. We first explore the use of crowdsourcing to improve search result ranking. When the crowd is used to replace or augment traditional retrieval components such as query expansion and relevance scoring, we find that we can increase robustness against failure for query expansion and improve overall precision for results filtering. However, the gains that we observe are limited and unlikely to make up for the extra cost and time that the crowd requires. We then explore ways to incorporate the crowd into the search process that more drastically alter the overall experience. We find that using crowd workers to support rich query understanding and result processing appears to be a more worthwhile way to make use of the crowd during search. Our results confirm that crowdsourcing can positively impact the search experience but suggest that significant changes to the search process may be required for crowdsourcing to fulfill its potential in search systems.
机译:尽管技术进步,算法搜索系统仍然难以满足复杂或微妙的信息需求。例如,要求深度语义解释的方案对于计算机来说是一个挑战。另一方面,人们非常适合解决此类问题。结果,在搜索过程中,人与计算机有机会利用各自的独特能力进行协作。尽管依靠人工干预的搜索工具将永远无法像现在的搜索引擎那样迅速地做出响应,但最近的研究表明,在某些情况下,如果搜索引擎带来更好的体验,则可能会花费更多的时间。本文探讨了如何在查询时使用众包来扩大搜索管道的关键阶段。我们首先探索使用众包来提高搜索结果排名。当使用人群代替或扩展传统的检索组件(例如查询扩展和相关性评分)时,我们发现我们可以提高针对查询扩展失败的鲁棒性,并提高结果过滤的整体精度。但是,我们观察到的收益是有限的,不可能弥补人群所需的额外成本和时间。然后,我们探索将人群纳入搜索过程的方法,这些方法将极大地改变整体体验。我们发现使用人群工人来支持丰富的查询理解和结果处理似乎是在搜索过程中利用人群的一种更有价值的方法。我们的结果证实,众包可以对搜索体验产生积极影响,但建议为使众包发挥其在搜索系统中的潜力,可能需要对搜索过程进行重大更改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号