首页> 外文期刊>ACM transactions on intelligent systems >STCAPLRS: A Spatial-Temporal Context-Aware Personalized Location Recommendation System
【24h】

STCAPLRS: A Spatial-Temporal Context-Aware Personalized Location Recommendation System

机译:STCAPLRS:时空上下文感知的个性化位置推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Newly emerging location-based social media network services (LBSMNS) provide valuable resources to understand users' behaviors based on their location histories. The location-based behaviors of a user are generally influenced by both user intrinsic interest and the location preference, and moreover are spatial-temporal context dependent. In this article, we propose a spatial-temporal context-aware personalized location recommendation system (STCAPLRS), which offers a particular user a set of location items such as points of interest or venues (e.g., restaurants and shopping malls) within a geospatial range by considering personal interest, local preference, and spatial-temporal context influence. STCAPLRS can make accurate recommendation and facilitate people's local visiting and new location exploration by exploiting the context information of user behavior, associations between users and location items, and the location and content information of location items. Specifically, STCAPLRS consists of two components: offline modeling and online recommendation. The core module of the offline modeling part is a context-aware regression mixture model that is designed to model the location-based user behaviors in LBSMNS to learn the interest of each individual user, the local preference of each individual location, and the context-aware influence factors. The online recommendation part takes a querying user along with the corresponding querying spatial-temporal context as input and automatically combines the learned interest of the querying user, the local preference of the querying location, and the context-aware influence factor to produce the top-k recommendations. We evaluate the performance of STCAPLRS on two real-world datasets: Dianping and Foursquare. The results demonstrate the superiority of STCAPLRS in recommending location items for users in terms of both effectiveness and efficiency. Moreover, the experimental analysis results also illustrate the excellent interpretability of STCAPLRS.
机译:新兴的基于位置的社交媒体网络服务(LBSMNS)提供了宝贵的资源,可根据用户的位置历史了解他们的行为。用户的基于位置的行为通常受用户固有兴趣和位置偏好的影响,而且还取决于时空上下文。在本文中,我们提出了一种时空上下文感知的个性化位置推荐系统(STCAPLRS),该系统为特定用户提供了一组位置项,例如兴趣点或地理空间范围内的场所(例如,餐馆和购物中心)考虑个人兴趣,当地偏好和时空背景的影响。 STCAPLRS通过利用用户行为的上下文信息,用户与位置项之间的关联以及位置项的位置和内容信息,可以做出准确的推荐并促进人们的本地访问和新的位置探索。具体来说,STCAPLRS由两个组件组成:离线建模和在线推荐。离线建模部分的核心模块是上下文感知回归混合模型,该模型旨在对LBSMNS中基于位置的用户行为进行建模,以了解每个用户的兴趣,每个位置的本地偏好以及上下文意识到影响因素。在线推荐部分将一个查询用户以及相应的查询时空上下文作为输入,并自动组合查询用户的学习兴趣,查询位置的本地偏好以及上下文感知的影响因素,以产生最高k条建议。我们评估STCAPLRS在两个真实数据集上的性能:点平和Foursquare。结果表明,在有效性和效率方面,STCAPLRS在为用户推荐位置项目方面均具有优势。此外,实验分析结果也说明了STCAPLRS的出色解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号