首页> 外文期刊>ACM transactions on intelligent systems >Scalable Urban Mobile Crowdsourcing: Handling Uncertainty in Worker Movement
【24h】

Scalable Urban Mobile Crowdsourcing: Handling Uncertainty in Worker Movement

机译:可扩展的城市移动众包:处理工人运动中的不确定性

获取原文
获取原文并翻译 | 示例

摘要

In this article, we investigate effective ways of utilizing crowdworkers in providing various urban services. The task recommendation platform that we design can match tasks to crowdworkers based on workers' historical trajectories and time budget limits, thus making recommendations personal and efficient. One major challenge we manage to address is the handling of crowdworker's trajectory uncertainties. In this article, we explicitly allow multiple routine routes to be probabilistically associated with each worker. We formulate this problem as an integer linear program whose goal is to maximize the expected total utility achieved by all workers. We further exploit the separable structures of the formulation and apply the Lagrangian relaxation technique to scale up computation. Numerical experiments have been performed over the instances generated using the realistic public transit dataset in Singapore. The results show that we can find significantly better solutions than the deterministic formulation, and in most cases we can find solutions that are very close to the theoretical performance limit. To demonstrate the practicality of our approach, we deployed our recommendation engine to a campus-scale field trial, and we demonstrate that workers receiving our recommendations incur fewer detours and complete more tasks, and are more efficient against workers relying on their own planning (25% more for top workers who receive recommendations). This is achieved despite having highly uncertain worker trajectories. We also demonstrate how to further improve the robustness of the system by using a simple multi-coverage mechanism.
机译:在本文中,我们研究了利用群众工作者提供各种城市服务的有效方法。我们设计的任务推荐平台可以根据工作人员的历史轨迹和时间预算限制,将任务与群众工作者相匹配,从而使建议更加个性化和高效。我们设法解决的主要挑战之一是如何应对群众的轨迹不确定性。在本文中,我们明确允许将多个例行路由概率性地与每个工作人员相关联。我们将这个问题表述为一个整数线性程序,其目标是使所有工人获得的预期总效用最大化。我们进一步利用配方的可分离结构,并应用拉格朗日松弛技术来扩大计算范围。已经对使用新加坡的现实公交数据集生成的实例进行了数值实验。结果表明,与确定性公式相比,我们可以找到更好的解决方案,并且在大多数情况下,我们可以找到非常接近理论性能极限的解决方案。为了证明我们方法的实用性,我们将推荐引擎部署到了校园规模的现场试验中,并且证明了接受我们推荐的工人减少了弯路,完成了更多任务,并且对依靠自己计划的工人更有效率(25收到建议的高级员工增加%)。尽管工人的工作轨迹高度不确定,但还是可以实现这一点。我们还将演示如何通过使用简单的多覆盖机制进一步提高系统的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号