首页> 外文期刊>ACM transactions on intelligent systems and technology >MKEL: Multiple Kernel Ensemble Learning via Unified Ensemble Loss for Image Classification
【24h】

MKEL: Multiple Kernel Ensemble Learning via Unified Ensemble Loss for Image Classification

机译:MKEL:通过统一集合损失进行图像分类的多个内核集合学习

获取原文
获取原文并翻译 | 示例

摘要

In this article, a novel ensemble model, called Multiple Kernel Ensemble Learning (MKEL), is developed by introducing a unified ensemble loss. Different from the previous multiple kernel learning (MKL) methods, which attempt to seek a linear combination of basis kernels as a unified kernel, our MKEL model aims to find multiple solutions in corresponding Reproducing Kernel Hilbert Spaces (RKHSs) simultaneously. To achieve this goal, multiple individual kernel losses are integrated into a unified ensemble loss. Therefore, each model can co-optimize to learn its optimal parameters by minimizing a unified ensemble loss in multiple RKHSs. Furthermore, we apply our proposed ensemble loss into the deep network paradigm and take the sub-network as a kernel mapping from the original input space into a feature space, named Deep-MKEL (D-MKEL). Our D-MKEL model can utilize the diversified deep individual sub-networks into a whole unified network to improve the classification performance. With this unified loss design, our D-MKEL model can make our network much wider than other traditional deep kernel networks and more parameters are learned and optimized. Experimental results on several mediate UCI classification and computer vision datasets demonstrate that our MKEL model can achieve the best classification performance among comparative MKL methods, such as Simple MKL, GMKL, Spicy MKL, and Matrix-Regularized MKL. On the contrary, experimental results on large-scale CIFAR-10 and SVHN datasets concretely show the advantages and potentialities of the proposed D-MKEL approach compared to state-of-the-art deep kernel methods.
机译:在本文中,通过引入统一的集合损耗开发了一种名为多个内核集合学习(MKEL)的新型集合模型。与先前多个内核学习(MKL)方法不同,尝试寻求基础内核的线性组合作为统一内核,我们的MKEL模型旨在在相应的再现内核HILBERT空间(RKHSS)同时找到多种解决方案。为实现这一目标,多个单独的内核损耗集成到统一的集合损失中。因此,通过最小化多个RKHSS中的统一集合损耗,每个模型可以共同优化以学习其最佳参数。此外,我们将建议的集合丢失应用于深度网络范例,并将子网从原始输入空间中的内核映射到一个名为Deep-MKEL(D-MKEL)的特征空间。我们的D-MKEL模型可以利用多样化的深层子网进入整个统一网络以提高分类性能。通过这一统一损失设计,我们的D-MKEL模型可以使我们的网络比其他传统的深内核网络更广泛,学习和优化更多的参数。关于几个Mediate UCI分类和计算机视觉数据集的实验结果表明,我们的MKEL模型可以在比较MKL方法之间实现最佳分类性能,例如简单的MKL,GMKL,Spicy MKL和矩阵正则化MKL。相反,大规模CiFar-10和SVHN数据集的实验结果具体示出了与最先进的深内核方法相比提出的D-MKEL方法的优点和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号