首页> 外文期刊>ACM transactions on intelligent systems and technology >RHUPS: Mining Recent High Utility Patterns with Sliding Window-based Arrival Time Control over Data Streams
【24h】

RHUPS: Mining Recent High Utility Patterns with Sliding Window-based Arrival Time Control over Data Streams

机译:RHUPS:最近的初始高效图案,基于滑动窗口的到达时间控制数据流

获取原文
获取原文并翻译 | 示例

摘要

Databases that deal with the real world have various characteristics. New data is continuously inserted over time without limiting the length of the database, and a variety of information about the items constituting the database is contained. Recently generated data has a greater influence than the previously generated data. These are called the time-sensitive non-binary stream databases, and they include databases such as web-server click data, market sales data, data from sensor networks, and network traffic measurement. Many high utility pattern mining and stream pattern mining methods have been proposed so far. However, they have a limitation that they are not suitable to analyze these databases, because they find valid patterns by analyzing a database with only some of the features described above. Therefore, knowledge-based software about how to find meaningful information efficiently by analyzing databases with these characteristics is required. In this article, we propose an intelligent information system that calculates the influence of the insertion time of each batch in a large-scale stream database by applying the sliding window model and mines recent high utility patterns without generating candidate patterns. In addition, a novel list-based data structure is suggested for a fast and efficient management of the time-sensitive stream databases. Moreover, our technique is compared with state-of-the-art algorithms through various experiments using real datasets and synthetic datasets. The experimental results showthat our approach outperforms the previously proposed methods in terms of runtime, memory usage, and scalability.
机译:处理现实世界的数据库具有各种特征。随着时间的推移连续插入新数据,而不限制数据库的长度,并包含有关构成数据库的项目的各种信息。最近生成的数据的影响力比先前生成的数据更大。这些被称为时间敏感的非二进制流数据库,它们包括数据库,例如Web服务器单击数据,市场销售数据,来自传感器网络的数据以及网络流量测量。到目前为止,已经提出了许多高实用图案挖掘和流模式采矿方法。然而,它们有一个限制,它们不适合分析这些数据库,因为它们通过分析数据库仅具有上述一些特征的数据库来找到有效模式。因此,需要通过分析具有这些特征的数据库有效地找到有意义信息的知识的软件。在本文中,我们提出了一种智能信息系统,该系统通过应用滑动窗模型和初始高实用图案而不产生候选模式,计算每个批次在大规模流数据库中的插入时间的影响。此外,建议基于列出的基于列表的数据结构,以便快速有效地管理时间敏感的流数据库。此外,通过使用真实数据集和合成数据集的各种实验将我们的技术与最先进的算法进行比较。实验结果表明我们的方法在运行时,内存使用和可扩展性方面优于先前提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号