首页> 外文期刊>ACM transactions on intelligent systems >An Empirical Investigation of Different Classifiers, Encoding, and Ensemble Schemes for Next Event Prediction Using Business Process Event Logs
【24h】

An Empirical Investigation of Different Classifiers, Encoding, and Ensemble Schemes for Next Event Prediction Using Business Process Event Logs

机译:使用业务流程事件日志对下一个事件预测不同分类器,编码和集合方案的实证研究

获取原文
获取原文并翻译 | 示例

摘要

There is a growing need for empirical benchmarks that support researchers and practitioners in selecting the best machine learning technique for given prediction tasks. In this article, we consider the next event prediction task in business process predictive monitoring, and we extend our previously published benchmark by studying the impact on the performance of different encoding windows and of using ensemble schemes. The choice of whether to use ensembles and which scheme to use often depends on the type of data and classification task. While there is a general understanding that ensembles perform well in predictive monitoring of business processes, next event prediction is a task for which no other benchmarks involving ensembles are available. The proposed benchmark helps researchers to select a high-performing individual classifier or ensemble scheme given the variability at the case level of the event log under consideration. Experimental results show that choosing an optimal number of events for feature encoding is challenging, resulting in the need to consider each event log individually when selecting an optimal value. Ensemble schemes improve the performance of low-performing classifiers in this task, such as SVM, whereas high-performing classifiers, such as tree-based classifiers, are not better off when ensemble schemes are considered.
机译:在为给定预测任务选择最佳机器学习技术时,支持研究人员和从业者的经验基准越来越需要。在本文中,我们考虑了业务流程预测监控中的下一个事件预测任务,我们通过研究对不同编码窗口的性能和使用集合方案的影响来扩展我们先前发布的基准。选择是否使用合并以及使用哪种方案通常取决于数据和分类任务的类型。虽然有一般性的理解,但是,在对业务流程的预测监控中才能良好地表现良好,下一步事件预测是没有涉及合奏的其他基准的任务。该建议的基准测试有助于研究人员选择在考虑事件日志的情况下的变异性的情况下选择高性能的单个分类器或集合方案。实验结果表明,为特征编码选择最佳事件是具有挑战性的,导致在选择最佳值时需要单独考虑每个事件日志。合奏方案可以提高此任务中低执行分类器的性能,例如SVM,而在考虑集合方案时,高性能分类器(例如基于树的分类器)并不更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号