首页> 外文期刊>ACM transactions on intelligent systems >Robust Fake News Detection Over Time and Attack
【24h】

Robust Fake News Detection Over Time and Attack

机译:随着时间的流逝和攻击的强大的伪造新闻检测

获取原文
获取原文并翻译 | 示例

摘要

In this study, we examine the impact of time on state-of-the-art news veracity classifiers. We show that, as time progresses, classification performance for both unreliable and hyper-partisan news classification slowly degrade. While this degradation does happen, it happens slower than expected, illustrating that hand-crafted, content-based features, such as style of writing, are fairly robust to changes in the news cycle. We show that this small degradation can bemitigated using online learning. Last, we examine the impact of adversarial content manipulation by malicious news producers. Specifically, we test three types of attack based on changes in the input space and data availability. We show that static models are susceptible to content manipulation attacks, but online models can recover from such attacks.
机译:在这项研究中,我们研究了时间对最新新闻准确性分类器的影响。我们显示,随着时间的流逝,不可靠和超党派新闻分类的分类性能会缓慢下降。尽管确实发生了这种降级,但它的发生速度比预期的要慢,这说明手工制作的基于内容的功能(例如写作风格)对于新闻周期的变化相当强大。我们表明,使用在线学习可以减轻这种小的退化。最后,我们研究恶意新闻生产者进行对抗性内容操纵的影响。具体来说,我们根据输入空间和数据可用性的变化来测试三种类型的攻击。我们显示静态模型容易受到内容操纵攻击,但是在线模型可以从此类攻击中恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号