首页> 外文期刊>ACM transactions on intelligent systems >Lightweight Convolution Neural Networks for Mobile Edge Computing in Transportation Cyber Physical Systems
【24h】

Lightweight Convolution Neural Networks for Mobile Edge Computing in Transportation Cyber Physical Systems

机译:用于交通网络物理系统中移动边缘计算的轻型卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing extends Transportation Cyber-Physical Systems (T-CPS) with provision of enhanced computing and storage capability via offloading computing tasks to remote cloud servers. However, cloud computing cannot fulfill the requirements such as low latency and context awareness in T-CPS. The appearance of Mobile Edge Computing (MEC) can overcome the limitations of cloud computing via offloading the computing tasks at edge servers in approximation to users, consequently reducing the latency and improving the context awareness. Although MEC has the potential in improving 'peps, it is incapable of processing computational-intensive tasks such as deep learning algorithms due to the intrinsic storage and computing capability constraints. Therefore, we design and develop a lightweight deep learning model to support MEC applications in T-CPS. In particular, we put forth a stacked convolutional neural network (CNN) consisting of factorization convolutional layers alternating with compression layers (namely, lightweight CNN-FC). Extensive experimental results show that our proposed lightweight CNN-FC can greatly decrease the number of unnecessary parameters, thereby reducing the model size while maintaining the high accuracy in contrast to conventional CNN models. In addition, we also evaluate the performance of our proposed model via conducting experiments at a realistic MEC platform. Specifically, experimental results at this MEC platform show that our model can maintain the high accuracy while preserving the portable model size.
机译:云计算通过将计算任务卸载到远程云服务器来提供增强的计算和存储功能,从而扩展了运输网络物理系统(T-CPS)。但是,云计算无法满足T-CPS中的低延迟和上下文感知等要求。移动边缘计算(MEC)的出现可以通过将边缘服务器上的计算任务卸载到接近用户的位置来克服云计算的局限性,从而减少延迟并改善上下文感知。尽管MEC具有改善'peps'的潜力,但由于内在存储和计算能力的限制,它无法处理诸如深度学习算法之类的计算密集型任务。因此,我们设计并开发了轻量级的深度学习模型,以支持T-CPS中的MEC应用程序。特别是,我们提出了一个堆叠的卷积神经网络(CNN),它由分解压缩卷积层和压缩层(即轻量级CNN-FC)交替组成。大量的实验结果表明,与传统的CNN模型相比,我们提出的轻量级CNN-FC可以大大减少不必要的参数数量,从而在保持高精度的同时减小了模型尺寸。此外,我们还通过在现实的MEC平台上进行实验来评估我们提出的模型的性能。具体而言,在此MEC平台上的实验结果表明,我们的模型可以保持高精度,同时保留便携式模型的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号