首页> 外文期刊>ACM Transactions on Information Systems >Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering
【24h】

Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering

机译:应用关联检索技术缓解协同过滤中的稀疏性问题

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are being widely applied in many application settings to suggest products, services, and information items to potential consumers. Collaborative filtering, the most successful recommendation approach, makes recommendations based on past transactions and feedback from consumers sharing similar interests. A major problem limiting the usefulness of collaborative filtering is the sparsity problem, which refers to a situation in which transactional or feedback data is sparse and insufficient to identify similarities in consumer interests. In this article, we propose to deal with this sparsity problem by applying an associative retrieval framework and related spreading activation algorithms to explore transitive associations among consumers through their past transactions and feedback. Such transitive associations are a valuable source of information to help infer consumer interests and can be explored to deal with the sparsity problem. To evaluate the effectiveness of our approach, we have conducted an experimental study using a data set from an online bookstore. We experimented with three spreading activation algorithms including a constrained Leaky Capacitor algorithm, a branch-and-bound serial symbolic search algorithm, and a Hopfield net parallel relaxation search algorithm. These algorithms were compared with several collaborative filtering approaches that do not consider the transitive associations: a simple graph search approach, two variations of the user-based approach, and an item-based approach. Our experimental results indicate that spreading activation-based approaches significantly outperformed the other collaborative filtering methods as measured by recommendation precision, recall, the F-measure, and the rank score. We also observed the over-activation effect of the spreading activation approach, that is, incorporating transitive associations with past transactional data that is not sparse may "dilute" the data used to infer user preferences and lead to degradation in recommendation performance.
机译:推荐系统已广泛应用于许多应用程序设置中,以向潜在消费者推荐产品,服务和信息项。协作过滤是最成功的推荐方法,它基于过去的交易和来自拥有相似兴趣的消费者的反馈来做出推荐。限制协作过滤有用性的主要问题是稀疏性问题,稀疏性问题是指交易或反馈数据稀疏且不足以识别消费者利益相似性的情况。在本文中,我们建议通过应用关联检索框架和相关的扩展激活算法来解决消费者的稀疏性问题,以通过消费者过去的交易和反馈来探索消费者之间的传递性关联。这样的传递性关联是有助于推断消费者兴趣的有价值的信息来源,可以用来解决稀疏性问题。为了评估我们方法的有效性,我们使用在线书店中的数据集进行了一项实验研究。我们尝试了三种扩展激活算法,包括约束泄漏电容器算法,分支定界串行符号搜索算法和Hopfield网络并行松弛搜索算法。这些算法与几种不考虑传递关联的协作过滤方法进行了比较:简单的图搜索方法,基于用户的方法的两种变体和基于项目的方法。我们的实验结果表明,基于推荐精度,召回率,F量度和等级得分,基于扩散激活的方法明显优于其他协作过滤方法。我们还观察到了扩展激活方法的过度激活效果,也就是说,将传递关联与不稀疏的过去交易数据合并可能会“稀释”用于推断用户偏好的数据,并导致推荐性能下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号