首页> 外文期刊>ACM Transactions on Information Systems >A Space-Partitioning-Based Indexing Method for Multidimensional Non-Ordered Discrete Data Spaces
【24h】

A Space-Partitioning-Based Indexing Method for Multidimensional Non-Ordered Discrete Data Spaces

机译:基于空间划分的多维无序离散数据空间索引方法

获取原文
获取原文并翻译 | 示例

摘要

There is an increasing demand for similarity searches in a multidimensional non-ordered discrete data space (NDDS) from application areas such as bioinformatics and data mining. The non-ordered and discrete nature of an NDDS raises new challenges for developing efficient indexing methods for similarity searches. In this article, we propose a new indexing technique, called the NSP-tree, to support efficient similarity searches in an NDDS. As we know, overlap causes a performance degradation for indexing methods (e.g., the R-tree) for a continuous data space. In an NDDS, this problem is even worse due to the limited number of elements available on each dimension of an NDDS. The key idea of the NSP-tree is to use a novel discrete space-partitioning (SP) scheme to ensure no overlap at each level in the tree. A number of heuristics and strategies are incorporated into the tree construction algorithms to deal with the challenges for developing an SP-based index tree for an NDDS. Our experiments demonstrate that the NSP-tree is quite promising in supporting efficient similarity searches in NDDSs. We have compared the NSP-tree with the ND-tree, a data-partitioning-based indexing technique for NDDSs that was proposed recently, and the linear scan using different NDDSs. It was found that the search performance of the NSP-tree was better than those of both methods.
机译:在诸如生物信息学和数据挖掘之类的应用领域中,对于多维无序离散数据空间(NDDS)中的相似性搜索的需求不断增长。 NDDS的无序和离散性质为开发用于相似性搜索的有效索引方法提出了新的挑战。在本文中,我们提出了一种新的索引技术,称为NSP树,以支持NDDS中的有效相似性搜索。众所周知,重叠会导致连续数据空间的索引方法(例如R树)的性能下降。在NDDS中,由于在NDDS的每个维度上可用的元素数量有限,因此此问题更加严重。 NSP树的关键思想是使用新颖的离散空间划分(SP)方案,以确保树中每个级别上都没有重叠。许多启发式方法和策略已合并到树构建算法中,以应对为NDDS开发基于SP的索引树的挑战。我们的实验表明,NSP树在支持NDDS中的有效相似性搜索方面非常有前途。我们已经比较了NSP树和ND树,ND树是最近提出的基于数据分区的NDDS索引技术,并且使用了不同的NDDS进行线性扫描。发现NSP树的搜索性能优于两种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号