首页> 外文期刊>ACM Transactions on Information Systems >A Few Good Topics: Experiments in Topic Set Reduction for Retrieval Evaluation
【24h】

A Few Good Topics: Experiments in Topic Set Reduction for Retrieval Evaluation

机译:几个不错的主题:主题集约简的检索评估实验

获取原文
获取原文并翻译 | 示例

摘要

We consider the issue of evaluating information retrieval systems on the basis of a limited number of topics. In contrast to statistically-based work on sample sizes, we hypothesize that some topics or topic sets are better than others at predicting true system effectiveness, and that with the right choice of topics, accurate predictions can be obtained from small topics sets. Using a variety of effectiveness metrics and measures of goodness of prediction, a study of a set of TREC and NTCIR results confirms this hypothesis, and provides evidence that the value of a topic set for this purpose does generalize.
机译:我们基于有限的主题考虑评估信息检索系统的问题。与基于统计的样本量研究相反,我们假设某些主题或主题集在预测真实系统有效性方面比其他主题或主题集更好,并且通过正确选择主题,可以从较小的主题集获得准确的预测。使用各种有效性度量标准和预测的良好程度,对一组TREC和NTCIR结果的研究证实了这一假设,并提供了证据证明为此目的设置的主题确实可以推广。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号