首页> 外文期刊>ACM Transactions on Information Systems >Mining Near-Duplicate Graph for Cluster-Based Reranking of Web Video Search Results
【24h】

Mining Near-Duplicate Graph for Cluster-Based Reranking of Web Video Search Results

机译:挖掘近似重复的图,用于基于群集的Web视频搜索结果排名

获取原文
获取原文并翻译 | 示例

摘要

Recently, video search reranking has been an effective mechanism to improve the initial text-based ranking list by incorporating visual consistency among the result videos. While existing methods attempt to rerank all the individual result videos, they suffer from several drawbacks. In this article, we propose a new video reranking paradigm called cluster-based video reranking (CVR). The idea is to first construct a video near-duplicate graph representing the visual sim-ilarity relationship among videos, followed by identifying the near-duplicate clusters from the video near-duplicate graph, then ranking the obtained near-duplicate clusters based on cluster properties and intercluster links, and finally for each ranked cluster, a representative video is selected and returned. Compared to existing methods, the new CVR ranks clusters and exhibits several advantages, including superior reranking by utilizing more reliable cluster properties, fast reranking on a small number of clusters, diverse and representative results. Particularly,we formulate the near-duplicate cluster identification as a novel maximally cohesive subgraph mining problem. By leveraging the designed cluster scoring properties indicating the cluster's importance and quality, random walk is applied over the near-duplicate cluster graph to rank clusters. An extensive evaluation study proves the novelty and superiority of our proposals over existing methods.
机译:最近,视频搜索重新排序已成为一种有效的机制,可以通过在结果视频中纳入视觉一致性来改善初始的基于文本的排名列表。尽管现有方法试图对所有单独的结果视频进行重新排名,但是它们具有若干缺点。在本文中,我们提出了一种新的视频重新排名范例,称为基于群集的视频重新排名(CVR)。想法是首先构建一个表示视频之间视觉相似性关系的视频近副本图,然后从视频近副本图中识别出近副本簇,然后根据聚类属性对获得的近副本簇进行排名和群集间链接,最后为每个排名群集,选择并返回代表视频。与现有方法相比,新的CVR对聚类进行排名,并显示出一些优势,包括通过利用更可靠的聚类属性进行卓越的重排名,对少数聚类进行快速重排名,获得多种多样且具有代表性的结果。特别地,我们将近重复聚类识别公式化为一个新的最大内聚子图挖掘问题。通过利用设计的聚类评分属性指示聚类的重要性和质量,可以在几乎重复的聚类图上应用随机游走以对聚类进行排名。广泛的评估研究证明了我们的建议相对于现有方法的新颖性和优越性。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2010年第4期|p.22.1-22.27|共27页
  • 作者单位

    School of Information Technology and Electrical Engineering, The University of Queensland, Australia;

    rnKey Labs of Data Engineering and Knowledge, Renmin University of China;

    rnDepartment of Syatems Engineering and Engineering Management, Chinese University of Hong Kong;

    rnSchool of Information Technology and Electrical Engineering, The University of Queensland, Australia;

    rnSchool of Economics and Management, Tsinghua University, China;

    rnSchool of Information Technology and Electrical Engineering, The University of Queensland, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cluster-based video reranking; web search; graph mining near-duplicate;

    机译:基于集群的视频重排;网络搜索;图挖掘近乎重复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号