首页> 外文期刊>ACM Transactions on Information Systems >Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents
【24h】

Identifying, Indexing, and Ranking Chemical Formulae and Chemical Names in Digital Documents

机译:在数字文档中识别,索引化学公式和化学名称并对其进行排名

获取原文
获取原文并翻译 | 示例

摘要

End-users utilize chemical search engines to search for chemical formulae and chemical names. Chemical search engines identify and index chemical formulae and chemical names appearing in text documents to support efficient search and retrieval in the future. Identifying chemical formulae and chemical names in text automatically has been a hard problem that has met with varying degrees of success in the past. We propose algorithms for chemical formula and chemical name tagging using Conditional Random Fields (CRFs) and Support Vector Machines (SVMs) that achieve higher accuracy than existing (published) methods. After chemical entities have been identified in text documents, they must be indexed. In order to support user-provided search queries that require a partial match between the chemical name segment used as a keyword or a partial chemical formula, all possible (or a significant number of) subformulae of formulae that appear in any document and all possible subterms (e.g., "methyl") of chemical names (e.g., "methylethyl ketone") must be indexed. Indexing all possible subformulae and subterms results in an exponential increase in the storage and memory requirements as well as the time taken to process the indices. We propose techniques to prune the indices significantly without reducing the quality of the returned results significantly. Finally, we propose multiple query semantics to allow users to pose different types of partial search queries for chemical entities. We demonstrate empirically that our search engines improve the relevance of the returned results for search queries involving chemical entities.
机译:最终用户利用化学搜索引擎来搜索化学式和化学名称。化学搜索引擎识别并索引文本文档中出现的化学式和化学名称,以支持将来的有效搜索和检索。自动识别文本中的化学式和化学名称一直是一个难题,过去已经遇到了不同程度的成功。我们提出了使用条件随机场(CRF)和支持向量机(SVM)进行化学式和化学名称标记的算法,该算法比现有(已发布)的方法具有更高的准确性。在文本文档中识别出化学实体后,必须对其进行索引。为了支持用户提供的搜索查询,这些查询需要用作关键字的化学名称段或部分化学式之间的部分匹配,出现在任何文档中的所有可能(或大量)化学式的子公式和所有可能的子术语化学名称(例如“甲基乙基酮”)的“例如”甲基”必须被索引。为所有可能的子公式和子项建立索引会导致存储和内存需求以及处理索引所花费的时间呈指数增长。我们提出了在不显着降低返回结果质量的情况下大幅修剪索引的技术。最后,我们提出了多种查询语义,以允许用户对化学实体提出不同类型的部分搜索查询。我们凭经验证明,我们的搜索引擎提高了返回结果与涉及化学实体的搜索查询的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号