首页> 外文期刊>ACM Transactions on Information Systems >TASC: A Transformation-Aware Soft Cascading Approach for Multimodal Video Copy Detection
【24h】

TASC: A Transformation-Aware Soft Cascading Approach for Multimodal Video Copy Detection

机译:TASC:一种用于多模式视频复制检测的转换感知软级联方法

获取原文
获取原文并翻译 | 示例

摘要

How to precisely and efficiently detect near-duplicate copies with complicated audiovisual transformations from a large-scale video database is a challenging task. To cope with this challenge, this article proposes a transformation-aware soft cascading (TASC) approach for multimodal video copy detection. Basically, our approach divides query videos into some categories and then for each category designs a transformation-aware chain to organize several detectors in a cascade structure. In each chain, efficient but simple detectors are placed in the forepart, whereas effective but complex detectors are located in the rear. To judge whether two videos are near-duplicates, a Detection-on-Copy-Units mechanism is introduced in the TASC, which makes the decision of copy detection depending on the similarity between their most similar fractions, called copy units (CUs), rather than the video-level similarity. Following this, we propose a CU search algorithm to find a pair of CUs from two videos and a CU-based localization algorithm to find the precise locations of their copy segments that are with the asserted CUs as the center. Moreover, to address the problem that the copies and noncopies are possibly linearly inseparable in the feature space, the TASC also introduces a flexible strategy, called soft decision boundary, to replace the single threshold strategy for each detector. Its basic idea is to automatically learn two thresholds for each detector to examine the easy-to-judge copies and noncopies, respectively, and meanwhile to train a nonlinear classifier to further check those hard-to-judge ones. Extensive experiments on three benchmark datasets showed that the TASC can achieve excellent copy detection accuracy and localization precision with a very high processing efficiency.
机译:如何从大型视频数据库中通过复杂的视听转换来精确,有效地检测几乎重复的副本是一项艰巨的任务。为了应对这一挑战,本文提出了一种用于多模式视频复制检测的转换感知软级联(TASC)方法。基本上,我们的方法将查询视频分为几个类别,然后针对每个类别设计一个转换感知链,以级联结构组织多个检测器。在每条链中,有效但简单的检测器放置在前面,而有效但复杂的检测器放置在后面。为了判断两个视频是否接近复制,在TASC中引入了“复制时检测”机制,该机制根据两个最相似片段(称为复制单元(CU))之间的相似性来决定是否进行复制检测。比视频水平的相似度更高。此后,我们提出了一种CU搜索算法来从两个视频中找到一对CU,并提出了一种基于CU的本地化算法来查找以断言的CU为中心的复制段的精确位置。此外,为了解决副本和非副本在特征空间中可能线性不可分割的问题,TASC还引入了一种称为“软决策边界”的灵活策略,以替换每个检测器的单个阈值策略。其基本思想是自动为每个检测器学习两个阈值,分别检查易于判断的副本和非副本,同时训练非线性分类器以进一步检查那些难以判断的副本。在三个基准数据集上进行的大量实验表明,TASC可以以非常高的处理效率实现出色的复制检测精度和定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号