首页> 外文期刊>ACM Transactions on Information Systems >Toward Comprehensive User and Item Representations via Three-tier Attention Network
【24h】

Toward Comprehensive User and Item Representations via Three-tier Attention Network

机译:通过三层关注网络对全面的用户和项目表示

获取原文
获取原文并翻译 | 示例

摘要

Product reviews can provide rich information about the opinions users have of products. However, it is nontrivial to effectively infer user preference and item characteristics from reviews due to the complicated semantic understanding. Existing methods usually learn features for users and items from reviews in single static fashions and cannot fully capture user preference and item features. In this article, we propose a neural review-based recommendation approach that aims to learn comprehensive representations of users/items under a three-tier attention framework. We design a review encoder to learn review features from words via a word-level attention, an aspect encoder to learn aspect features via a review-level attention, and a user/item encoder to learn the final representations of users/items via an aspect-level attention. In word- and review-level attentions, we adopt the context-aware mechanism to indicate importance of words and reviews dynamically instead of static attention weights. In addition, the attentions in the word and review levels are of multiple paradigms to learn multiple features effectively, which could indicate the diversity of user/item features. Furthermore, we propose a personalized aspect-level attention module in user/item encoder to learn the final comprehensive features. Extensive experiments are conducted and the results in rating prediction validate the effectiveness of our method.
机译:产品审查可以提供有关用户产品的丰富信息。然而,由于具有复杂的语义理解,有效地推断用户偏好和项目特征是不可行的。现有方法通常从单一静态时装的评论中学习用户和项目的功能,无法完全捕获用户首选项和项目功能。在本文中,我们提出了一种基于神经审查的推荐方法,旨在在三层关注框架下学习用户/项目的全面陈述。我们设计了一个评论编码器,通过单词级别注意,通过单词级别注意,通过审查级别注意学习方面的观点,以及通过审查级别注意,来学习方面的观点,以及通过一个方面来学习用户/项目的最终表示的方面编码器 - 注意力。在Word-和Review级关注中,我们采用了语境感知机制,以表示动态的单词和评论的重要性而不是静态注意力。此外,单词和审查级别中的注意事项是多个范例来有效地学习多个功能,这可以指示用户/项目特征的分集。此外,我们在用户/项目编码器中提出了一个个性化的方面关注模块,以了解最终的全面功能。进行了广泛的实验,并且评级预测结果验证了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号