首页> 外文期刊>ACM Transactions on Information Systems >Modeling Multiple Coexisting Category-Level Intentions for Next Item Recommendation
【24h】

Modeling Multiple Coexisting Category-Level Intentions for Next Item Recommendation

机译:为下一个项目建议建模多个共存类别级别意图

获取原文
获取原文并翻译 | 示例

摘要

Purchase intentions have a great impact on future purchases and thus can be exploited for making recommendations. However, purchase intentions are typically complex and may change from time to time. Through empirical study with two e-commerce datasets, we observe that behaviors of multiple types can indicate user intentions and a user may have multiple coexisting category-level intentions that evolve over time. In this article, we propose a novel Intention-Aware Recommender System (TARS) which consists of four components for mining such complex intentions from user behaviors of multiple types. In the first component, we utilize several Recurrent Neural Networks (RNNs) and an attention layer to model diverse user intentions simultaneously and design two kinds of Multi-behavior GRU (MGRU) cells to deal with heterogeneous behaviors. To reveal user intentions, we carefully design three tasks that share representations from MGRUs. The next-item recommendation is the main task and leverages attention to select user intentions according to candidate items. The remaining two (item prediction and sequence comparison) are auxiliary tasks and can reveal user intentions. Extensive experiments on the two real-world datasets demonstrate the effectiveness of our models compared with several state-of-the-art recommendation methods in terms of hit ratio and NDCG.
机译:购买意图对未来购买产生了很大影响,因此可以剥削建议。但是,购买意图通常很复杂,可能不时改变。通过具有两个电子商务数据集的经验研究,我们观察到多种类型的行为可以指示用户意图,用户可能具有多个共存类别级级别,即随着时间的推移而发展。在本文中,我们提出了一种新颖的意图知识推荐系统(TAR),该系统由四个组成部分组成,用于从多种类型的用户行为中挖掘此类复杂的意图。在第一个组件中,我们使用多个经常性神经网络(RNN)和注意层同时模拟各种用户意图,并设计两种多行为GRU(MGRU)单元以处理异构行为。要揭示用户意图,我们仔细设计了三个与MGRUS共享表示的任务。下一项建议是主要任务,并利用注意根据候选项目选择用户意图。其余的两个(项目预测和序列比较)是辅助任务,可以揭示用户意图。对两个现实世界数据集的广泛实验展示了模型的有效性,而在命中比率和NDCG方面与若干最先进的推荐方法相比。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2021年第3期|23.1-23.24|共24页
  • 作者

    Xu Yanan; Zhu Yanmin; Yu Jiadi;

  • 作者单位

    Shanghai Jiao Tong Univ 800 Dongchuan RD Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ 800 Dongchuan RD Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ 800 Dongchuan RD Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recurrent neural networks; recommender system;

    机译:经常性神经网络;推荐系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号