首页> 外文期刊>ACM Transactions on Information Systems >Explaining Text Matching on Neural Natural Language Inference
【24h】

Explaining Text Matching on Neural Natural Language Inference

机译:解释神经自然语言推理的文本匹配

获取原文
获取原文并翻译 | 示例

摘要

Natural language inference (NLI) is the task of detecting the existence of entailment or contradiction in a given sentence pair. Although NLI techniques could help numerous information retrieval tasks, most solutions for NLI are neural approaches whose lack of interpretability prohibits both straightforward integration and diagnosis for further improvement. We target the task of generating token-level explanations for NLI from a neural model. Many existing approaches for token-level explanation are either computationally costly or require additional annotations for training. In this article, we first introduce a novel method for training an explanation generator that does not require additional human labels. Instead, the explanation generator is trained with the objective of predicting how the model's classification output will change when parts of the inputs are modified. Second, we propose to build an explanation generator in a multi-task learning setting along with the original NLI task so the explanation generator can utilize the model's internal behavior. The experiment results suggest that the proposed explanation generator outperforms numerous strong baselines. In addition, our method does not require excessive additional computation at prediction time, which renders it an order of magnitude faster than the best-performing baseline.
机译:自然语言推断(NLI)是检测给定句子对中存在的存在或矛盾的任务。尽管NLI技术可以帮助许多信息检索任务,但NLI的大多数解决方案是神经方法,缺乏可解释性禁止直接集成和诊断以进一步改进。我们针对从神经模型生成NLI的令牌级别解释的任务。令牌级别解释的许多现有方法是计算地昂贵或需要额外的培训注释。在本文中,我们首先介绍一种培训不需要额外的人类标签的解释发生器的新方法。相反,解释发生器训练,目的是预测模型的分类输出将在修改部分的部分时如何改变。其次,我们建议在多任务学习设置中建立一个解释发生器以及原始NLI任务,因此解释发生器可以利用模型的内部行为。实验结果表明,所提出的解释发生器优于众多强力基线。此外,我们的方法在预测时间不需要过多的额外计算,这使得它比最佳性能的基线更快的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号