首页> 外文期刊>ACM Transactions on Information Systems >A Deep Learning Architecture for Psychometric Natural Language Processing
【24h】

A Deep Learning Architecture for Psychometric Natural Language Processing

机译:用于心理自然语言处理的深度学习架构

获取原文
获取原文并翻译 | 示例

摘要

Psychometric measures reflecting people's knowledge, ability, attitudes, and personality traits are critical for many real-world applications, such as e-commerce, health care, and cybersecurity. However, traditional methods cannot collect and measure rich psychometric dimensions in a timely and unobtrusive manner. Consequently, despite their importance, psychometric dimensions have received limited attention from the natural language processing and information retrieval communities. In this article, we propose a deep learning architecture, PyNDA, to extract psychometric dimensions from user-generated texts. PyNDA contains a novel representation embedding, a demographic embedding, a structural equation model (SEM) encoder, and a multitask learning mechanism designed to work in unison to address the unique challenges associated with extracting rich, sophisticated, and user-centric psychometric dimensions. Our experiments on three real-world datasets encompassing 11 psychometric dimensions, including trust, anxiety, and literacy, show that PyNDA markedly outperforms traditional feature-based classifiers as well as the state-of-the-art deep learning architectures. Ablation analysis reveals that each component of PyNDA significantly contributes to its overall performance. Collectively, the results demonstrate the efficacy of the proposed architecture for facilitating rich psychometric analysis. Our results have important implications for user-centric information extraction and retrieval systems looking to measure and incorporate psychometric dimensions.
机译:反映人们知识,能力,态度和人格特质的心理测度对许多实际应用(例如电子商务,医疗保健和网络安全)至关重要。但是,传统方法无法及时,毫不干扰地收集和测量丰富的心理维度。因此,尽管它们具有重要意义,但心理测度在自然语言处理和信息检索领域受到的关注有限。在本文中,我们提出了一种深度学习架构PyNDA,用于从用户生成的文本中提取心理测度维度。 PyNDA包含新颖的表示形式嵌入,人口统计学嵌入,结构方程模型(SEM)编码器和多任务学习机制,旨在协同工作以解决与提取丰富,复杂和以用户为中心的心理测量维度相关的独特挑战。我们对包含11个心理测量维度(包括信任,焦虑和识字)的三个真实世界数据集进行的实验表明,PyNDA明显优于传统的基于特征的分类器以及最新的深度学习架构。消融分析表明,PyNDA的每个成分都对其整体性能做出了重要贡献。总的来说,结果证明了所提出的体系结构有利于丰富的心理分析的功效。我们的研究结果对以用户为中心的信息提取和检索系统具有重要意义,这些系统希望测量和合并心理维度。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2020年第1期|6.1-6.29|共29页
  • 作者

  • 作者单位

    Univ Virginia 14 Univ Circle 4 Charlottesville VA 22903 USA;

    Univ Virginia McIntire Sch Commerce Rouss Hall & Robertson Hall 125 Ruppel Dr Charlottesville VA 22903 USA;

    Emory Univ Atlanta GA 30322 USA|Georgia Tech Atlanta GA USA|Dept Biomed Engn 313 Ferst Dr Room 2127 Atlanta GA 30332 USA;

    Univ Arizona McClelland Hall 430X 1130 E Helen St Tucson AZ 85721 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; natural language processing; psychometric measures; text classification;

    机译:深度学习;自然语言处理;心理测度文字分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号