首页> 外文期刊>ACM Transactions on Information Systems >Learning Semantic Representations from Directed Social Links to Tag Microblog Users at Scale
【24h】

Learning Semantic Representations from Directed Social Links to Tag Microblog Users at Scale

机译:从定向社交链接到标记微博用户的大规模学习语义表示

获取原文
获取原文并翻译 | 示例

摘要

This article presents a network embedding approach to automatically generate tags for microblog users. Instead of using text data, we aim to annotate microblog users with meaningful tags by leveraging rich social link data. To utilize directed social links, we use two kinds of node representations for modeling user interest in terms of their followers and followees, respectively. To alleviate the sparsity problem, we propose a novel method based on two transformation functions for capturing implicit interest similarity. Different from previous works on capturing high-order proximity, our model is able to directly characterize the effect of the context user on the proximity of node pairs. Another novelty of our model is that the importance scores of users learned from the classic PageRank algorithm are utilized to set the link weights. By using such weights, our model is more capable of disentangling the interest similarity evidence of a link. We jointly consider the above factors when designing the final objective function.We construct a very large evaluation set consisting of 2.6M users, 0.5M tags, and 0.8B following links. To our knowledge, it is the largest reported dataset for microblog user tagging in the literature. Extensive experiments on this dataset demonstrate the effectiveness of the proposed approach. We implement this approach with several optimization techniques, which makes our model easy to scale to very large social networks. Ubiquitous social links provide important data resources to understand user interests. Our work provides an effective and efficient solution to annotate user interests solely using the link data, which has important practical value in industry. To illustrate the use of our models, we implement a demonstration system for visualizing, navigating, and searching microblog users.
机译:本文介绍了一种网络嵌入方法,可为微博用户自动生成标签。我们不使用文本数据,而是通过利用丰富的社交链接数据来为微博用户添加有意义的标签。为了利用定向社交链接,我们使用两种节点表示法分别根据关注者和关注者来建模用户兴趣。为了缓解稀疏性问题,我们提出了一种基于两个变换函数的新方法来捕获隐式兴趣相似性。与先前关于捕获高阶邻近度的工作不同,我们的模型能够直接表征上下文用户对节点对邻近度的影响。我们模型的另一个新奇之处是,从经典PageRank算法中学到的用户的重要性分数用于设置链接权重。通过使用这种权重,我们的模型更有能力解开链接的兴趣相似性证据。在设计最终目标函数时,我们会综合考虑上述因素。我们构建了一个庞大的评估集,其中包含260万用户,0.5M标签和0.8B以下链接。据我们所知,它是文献中最大的微博客用户标签报道数据集。在该数据集上的大量实验证明了该方法的有效性。我们使用多种优化技术来实现此方法,这使我们的模型易于扩展到非常大的社交网络。无处不在的社交链接提供重要的数据资源,以了解用户的兴趣。我们的工作提供了仅使用链接数据注释用户兴趣的有效解决方案,这在行业中具有重要的实用价值。为了说明我们模型的使用,我们实现了一个演示系统,用于可视化,导航和搜索微博用户。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2020年第2期|17.1-17.30|共30页
  • 作者

  • 作者单位

    Renmin Univ China Gaoling Sch Artificial Intelligence Beijing Key Lab Big Data Management & Anal Method Beijing 100872 Peoples R China;

    Renmin Univ China Gaoling Sch Artificial Intelligence Beijing 100872 Peoples R China;

    Renmin Univ China Sch Informat Beijing 100872 Peoples R China;

    City Univ Hong Kong Hong Kong Peoples R China;

    Microsoft Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microblog user tagging; Network embedding; Social importance;

    机译:微博用户标签;网络嵌入;社会重要性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号