首页> 外文期刊>ACM Transactions on Information Systems >A Deep Bayesian Tensor-Based System for Video Recommendation
【24h】

A Deep Bayesian Tensor-Based System for Video Recommendation

机译:基于深度贝叶斯张量的视频推荐系统

获取原文
获取原文并翻译 | 示例

摘要

With the availability of abundant online multi-relational video information. recommender systems that can effectively exploit these sorts of data and suggest creatively interesting items will become increasingly important. Recent research illustrates that tensor models offer effective approaches for complex multi-relational data learning and missing element completion. So far, most tensor-based user clustering models have focused on the accuracy of recommendation. Given the dynamic nature of online media, recommendation in this setting is more challenging as it is difficult to capture the users' dynamic topic distributions in sparse data settings as well as to identify unseen items as candidates of recommendation. Targeting at constructing a recommender system that can encourage more creativity, a deep Bayesian probabilistic tensor framework for tag and item recommendation is proposed. During the score ranking processes, a metric called Bayesian surprise is incorporated to increase the creativity of the recommended candidates. The new algorithm, called Deep Canonical PARAFAC Factorization (DCPF), is evaluated on both synthetic and large-scale real-world problems. An empirical study for video recommendation demonstrates the superiority of the proposed model and indicates that it can better capture the latent patterns of interactions and generates interesting recommendations based on creative tag combinations.
机译:拥有丰富的在线多关系视频信息。可以有效利用这类数据并提出有创意的有趣项目的推荐系统将变得越来越重要。最近的研究表明,张量模型为复杂的多关系数据学习和缺少元素完成提供了有效的方法。到目前为止,大多数基于张量的用户聚类模型都集中在推荐的准确性上。考虑到在线媒体的动态性质,在这种情况下的推荐更具挑战性,因为很难在稀疏数据设置中捕获用户的动态主题分布,并且难以识别看不见的项目作为推荐候选。针对构建可以鼓励更多创造力的推荐系统,提出了一种用于标签和物品推荐的贝叶斯概率张量框架。在分数排名过程中,采用了一种称为贝叶斯惊奇的度量,以提高推荐候选人的创造力。新算法称为深度规范PARAFAC因子分解(DCPF),可对综合和大规模实际问题进行评估。视频推荐的经验研究证明了该模型的优越性,并表明它可以更好地捕获潜在的交互模式,并基于创意标签组合生成有趣的推荐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号