首页> 外文期刊>ACM Transactions on Graphics >PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting
【24h】

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting

机译:Polyfit:通过中间多边形配件的光栅剪贴画的感知对齐的矢量化

获取原文
获取原文并翻译 | 示例

摘要

Raster clip-art images, which consist of distinctly colored regions separatedby sharp boundaries typically allow for a clear mental vector interpretation.Converting these images into vector format can facilitate compactlossless storage and enable numerous processing operations. Despite recentprogress, existing vectorization methods that target such data frequentlyproduce vectorizations that fail to meet viewer expectations. We presentPolyFit, a new clip-art vectorization method that produces vectorizationswell aligned with human preferences. Since segmentation of such inputsinto regions had been addressed successfully, we specifically focus on fittingpiecewise smooth vector curves to the raster input region boundaries, a taskprior methods are particularly prone to fail on. While perceptual studiessuggest the criteria humans are likely to use during mental boundary vectorization,they provide no guidance as to the exact interaction between them;learning these interactions directly is problematic due to the large size of the solution space. To obtain the desired solution, we first approximate theraster region boundaries with coarse intermediate polygons leveraging acombination of perceptual cues with observations from studies of humanpreferences. We then use these intermediate polygons as auxiliary inputsfor computing piecewise smooth vectorizations of raster inputs. We define afinite set of potential polygon to curve primitive maps, and learn the mappingfrom the polygons to their best fitting primitive configurations fromhuman annotations, arriving at a compact set of local raster and polygonproperties whose combinations reliably predict human-expected primitivechoices. We use these primitives to obtain a final globally consistent splinevectorization. Extensive comparative user studies show that our methodoutperforms state-of-the-art approaches on a wide range of data, where ourresults are preferred three times as often as those of the closest competitoracross multiple types of inputs with various resolutions.
机译:光栅剪贴画图像,由独特的彩色区域分开通过尖锐的边界通常允许清晰的心理矢量解释。将这些图像转换成矢量格式可以促进紧凑型无损存储并启用多种处理操作。尽量近进度,经常瞄准此类数据的现有矢量化方法产生未能满足观众期望的矢量化。我们提出Polyfit,一种新的剪贴画矢量化方法,可产生矢量化与人的偏好保持一致。由于这些投入的分割进入地区已成功解决,我们专门关注拟合分段流畅的矢量曲线到光栅输入区域边界,任务现有方法特别容易发生。同时感知研究建议人类在精神边界矢量化期间可能使用标准,他们没有为它们之间的确切互动提供指导;由于溶液空间的大小,学习这些交互直接出现问题。为了获得所需的解决方案,我们首先近似带有粗中间多边形的光栅区域边界利用a感知提示与人类研究的观察结果组合首选项。然后我们将这些中间多边形用作辅助输入用于计算分段光滑矢量化的光栅输入。我们定义A.有限集潜在多边形曲线原始地图,并学习映射从多边形到他们最佳拟合的原始配置人类注释,到达一套紧凑的本地光栅和多边形组合可靠地预测人类预期原始的性质选择。我们使用这些原语来获得最终全球一致的样条曲线矢量化。广泛的比较用户研究表明我们的方法胜过最先进的方法在广泛的数据中,我们的结果优选为最接近竞争对手的三倍跨多种类型的具有各种分辨率的输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号