首页> 外文期刊>ACM Transactions on Graphics >C-Space Tunnel Discovery for Puzzle Path Planning
【24h】

C-Space Tunnel Discovery for Puzzle Path Planning

机译:拼图路径规划的C空间隧道发现

获取原文
获取原文并翻译 | 示例

摘要

Rigid body disentanglement puzzles are challenging for both humans andmotion planning algorithms because their solutions involve tricky twistingand sliding moves that correspond to navigating through narrow tunnels inthe puzzle’s configuration space (C-space). We propose a tunnel-discoveryand planning strategy for solving these puzzles. First, we locate importantfeatures on the pieces using geometric heuristics and machine learning, andthen match pairs of these features to discover collision free states in thepuzzle’s C-space that lie within the narrow tunnels. Second, we proposea Rapidly-exploring Dense Tree (RDT) motion planner variant that buildstunnel escape roadmaps and then connects these roadmaps into a solutionpath connecting start and goal states. We evaluate our approach on a varietyof challenging disentanglement puzzles and provide extensive baselinecomparisons with other motion planning techniques.
机译:刚性身体解剖学拼图对人类和人类的挑战挑战运动规划算法,因为它们的解决方案涉及棘手的扭曲和滑动移动,相合于通过窄隧道导航拼图的配置空间(C-Space)。我们提出了一个隧道发现和解决这些谜题的规划战略。首先,我们找到重要的使用几何启发式和机器学习的件上的功能然后匹配这些功能对,以发现自由策略在狭窄的隧道内拼图的C-Space。第二,我们提出一种迅速探索的致密树(RDT)运动计划员改变隧道逃生路线图,然后将这些路线图连接到解决方案中路径连接开始和目标状态。我们在各种方面评估我们的方法挑战性解开谜题并提供广泛的基线与其他运动规划技术的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号