首页> 外文期刊>ACM Transactions on Graphics >Informative Scene Decomposition for Crowd Analysis, Comparison and Simulation Guidance
【24h】

Informative Scene Decomposition for Crowd Analysis, Comparison and Simulation Guidance

机译:人群分析,比较和仿真指导的信息场景分解

获取原文
获取原文并翻译 | 示例

摘要

Crowd simulation is a central topic in several fields including graphics. Toachieve high-fidelity simulations, data has been increasingly relied upon foranalysis and simulation guidance. However, the information in real-worlddata is often noisy, mixed and unstructured, making it difficult for effectiveanalysis, therefore has not been fully utilized. With the fast-growing volumeof crowd data, such a bottleneck needs to be addressed. In this paper, wepropose a new framework which comprehensively tackles this problem.It centers at an unsupervised method for analysis. The method takes asinput raw and noisy data with highly mixed multi-dimensional (space, timeand dynamics) information, and automatically structure it by learning thecorrelations among these dimensions. The dimensions together with theircorrelations fully describe the scene semantics which consists of recurringactivity patterns in a scene, manifested as space flows with temporal and dynamicsprofiles. The effectiveness and robustness of the analysis have beentested on datasets with great variations in volume, duration, environment and crowd dynamics. Based on the analysis, new methods for data visualization,simulation evaluation and simulation guidance are also proposed.Together, our framework establishes a highly automated pipeline from rawdata to crowd analysis, comparison and simulation guidance. Extensiveexperiments and evaluations have been conducted to show the flexibility,versatility and intuitiveness of our framework.
机译:人群仿真是几个字段中的核心主题,包括图形。至实现高保真仿真,数据越来越依赖于分析与仿真指导。但是,现实世界中的信息数据经常嘈杂,混合和非结构化,使其难以有效因此,分析尚未充分利用。随着快速增长的体积人群数据,需要解决这样的瓶颈。在本文中,我们提出全面解决这个问题的新框架。它处于无监督的分析方法。该方法需要使用高度混合的多维(空间,时间)输入原始和嘈杂的数据和动态)信息,并通过学习来自动结构这些维度之间的相关性。尺寸与他们一起相关性充分描述了由反复性组成的场景语义场景中的活动模式,表现为空间流动与时间和动态配置文件。分析的有效性和鲁棒性在数据集上测试,具有巨大的体积,持续时间,环境和人群动态的变化。基于分析,新方法进行数据可视化,还提出了仿真评估和仿真指导。我们的框架在一起建立了从原始的高度自动化管道数据到人群分析,比较和仿真指导。广泛的已经进行了实验和评估以表现出灵活性,我们框架的多功能性和直观性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号