首页> 外文期刊>ACM Transactions on Graphics >Point2Mesh: A Self-Prior for Deformable Meshes
【24h】

Point2Mesh: A Self-Prior for Deformable Meshes

机译:point2mesh:可变形网格的自我前提

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce Point2Mesh, a technique for reconstructing asurface mesh from an input point cloud. Instead of explicitly specifying aprior that encodes the expected shape properties, the prior is defined automaticallyusing the input point cloud, which we refer to as a self-prior.The self-prior encapsulates reoccurring geometric repetitions from a singleshape within the weights of a deep neural network. We optimize thenetwork weights to deform an initial mesh to shrink-wrap a single inputpoint cloud. This explicitly considers the entire reconstructed shape, sinceshared local kernels are calculated to fit the overall object. The convolutionalkernels are optimized globally across the entire shape, which inherentlyencourages local-scale geometric self-similarity across the shape surface.We show that shrink-wrapping a point cloud with a self-prior converges to adesirable solution; compared to a prescribed smoothness prior, which oftenbecomes trapped in undesirable local minima. While the performance oftraditional reconstruction approaches degrades in non-ideal conditions thatare often present in real world scanning, i.e., unoriented normals, noise andmissing (low density) parts, Point2Mesh is robust to non-ideal conditions.We demonstrate the performance of Point2Mesh on a large variety of shapeswith varying complexity.
机译:在本文中,我们介绍了point2mesh,一种重建一个技术从输入点云表面网格。而不是明确地指定一个在该编码预期形状属性之前,先前自动定义使用输入点云,我们将其称为自我先前。自我前提封装从单个重复的重复重复深度神经网络的重量内的形状。我们优化了这一点网络权重变形初始网格以收缩 - 包装单个输入点云。这明确地考虑了整个重建的形状,以来计算共享本地内核以适合整体对象。卷积内核在整个形状上全球优化,其固有鼓励整个形状表面的本地尺度几何自相似性。我们展示了将点云缩小到一个自我前提融合到a理想的解决方案;与先前的规定平滑度相比,这通常被困在不希望的局部最小值。虽然表现了传统的重建方法在非理想条件下降低通常存在于现实世界扫描中,即不知值的法线,噪音和缺少(低密度)零件,Point2mesh对非理想条件强大。我们展示了Point2mesh在各种形状上的性能随着复杂性的不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号