首页> 外文期刊>ACM Transactions on Graphics >Human-in-the-Loop Differential Subspace Search in High-Dimensional Latent Space
【24h】

Human-in-the-Loop Differential Subspace Search in High-Dimensional Latent Space

机译:在高维潜空间中的LOOP差分子空间搜索

获取原文
获取原文并翻译 | 示例

摘要

Generative models based on deep neural networks often have a high-dimensionallatent space, ranging sometimes to a few hundred dimensions oreven higher, which typically makes them hard for a user to explore directly.We propose differential subspace search to allow efficient iterative userexploration in such a space, without relying on domain- or data-specificassumptions. We develop a general framework to extract low-dimensionalsubspaces based on a local differential analysis of the generative model, suchthat a small change in such a subspace would provide enough change in theresulting data. We do so by applying singular value decomposition to theJacobian of the generative model and forming a subspace with the desireddimensionality spanned by a given number of singular vectors stochasticallyselected on the basis of their singular values, to maintain ergodicity.We use our framework to present 1D subspaces to the user via a 1D sliderinterface. Starting from an initial location, the user finds a new candidatein the presented 1D subspace, which is in turn updated at the new candidatelocation. This process is repeated until no further improvement canbe made. Numerical simulations show that our method can better optimizesynthetic black-box objective functions than the alternatives that we tested. Furthermore, we conducted a user study using complex generative modelsand the results show that our method enables more efficient exploration ofhigh-dimensional latent spaces than the alternatives.
机译:基于深神经网络的生成模型通常具有高维度潜在的空间,有时距离几百个维度或甚至更高,这通常使用户能够直接探索。我们提出了差分子空间搜索,以允许有效的迭代用户在这种空间中的探索,而不依赖于域名或数据特定的假设。我们开发一般框架来提取低维基于对生成模型的局部差分分析的子空间,如这种子空间的一个小变化将提供足够的变化结果数据。我们通过将奇异值分解应用于雅各的生成模型和形成所需的子空间一定数量的单数载体随机跨越了维数根据它们的奇异值选择,以保持遍历。我们使用框架通过1d滑块向用户呈现1d子空间界面。从初始位置开始,用户找到新的候选人在呈现的1D子空间中,反而在新候选人时更新地点。该过程重复,直到没有进一步的改进制作。数值模拟表明我们的方法可以更好地优化合成黑匣子客观功能比我们测试的替代品。此外,我们使用复杂的生成模型进行了用户学习结果表明,我们的方法能够更有效地探索高维潜在的空间比替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号