首页> 外文期刊>ACM Transactions on Graphics >CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion
【24h】

CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion

机译:CARL:具有钢筋机置的加强学习的可控代理

获取原文
获取原文并翻译 | 示例

摘要

Motion synthesis in a dynamic environment has been a long-standing problemfor character animation. Methods using motion capture data tend to scalepoorly in complex environments because of their larger capturing and labelingrequirement. Physics-based controllers are effective in this regard, albeitless controllable. In this paper, we present CARL, a quadruped agent thatcan be controlled with high-level directives and react naturally to dynamicenvironments. Starting with an agent that can imitate individual animationclips, we use Generative Adversarial Networks to adapt high-level controls,such as speed and heading, to action distributions that correspond to theoriginal animations. Further fine-tuning through the deep reinforcementlearning enables the agent to recover from unseen external perturbationswhile producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigationmodules over the entire process. We evaluate our approach by measuringthe agent’s ability to follow user control and provide a visual analysis of thegenerated motion to show its effectiveness.
机译:动态环境中的运动综合一直是一个长期存在的问题对于角色动画。使用运动捕获数据的方法倾向于缩放复杂环境中差不多,因为他们的捕获和标签要求。虽然,基于物理的控制器在这方面有效不太可控。在本文中,我们呈现Carl,这是一种四足特征可以控制高级指令并自然地反应动态环境。从可以模仿单个动画的代理开始剪辑,我们使用生成的对抗网络来适应高级控制,如速度和标题,以对应于此的动作分布原始动画。通过深度加强进一步微调学习使代理能够从看不见的外部扰动中恢复同时产生平滑的过渡。然后,通过添加导航,它变得简单以在动态环境中创建自主代理整个过程中的模块。我们通过测量来评估我们的方法代理能够遵循用户控制并提供视觉分析产生动作以显示其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号