首页> 外文期刊>ACM Transactions on Graphics >Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface Modeling
【24h】

Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface Modeling

机译:基于草图的自由曲面模型的鲁棒流动引导神经预测

获取原文
获取原文并翻译 | 示例

摘要

Sketching provides an intuitive user interface for communicating free formshapes. While human observers can easily envision the shapes they intendto communicate, replicating this process algorithmically requires resolvingnumerous ambiguities. Existing sketch-based modeling methods resolvethese ambiguities by either relying on expensive user annotations or byrestricting the modeled shapes to specific narrow categories. We present anapproach for modeling generic freeform 3D surfaces from sparse, expressive2D sketches that overcomes both limitations by incorporating convolutionneural networks (CNN) into the sketch processing workflow.Given a 2D sketch of a 3D surface, we use CNNs to infer the depth andnormal maps representing the surface. To combat ambiguity we introducean intermediate CNN layer that models the dense curvature direction, orflow, field of the surface, and produce an additional output confidence map along with depth and normal. The flow field guides our subsequent surfacereconstruction for improved regularity; the confidence map trainedunsupervised measures ambiguity and provides a robust estimator for datafitting. To reduce ambiguities in input sketches users can refine their inputby providing optional depth values at sparse points and curvature hintsfor strokes. Our CNN is trained on a large dataset generated by renderingsketches of various 3D shapes using non-photo-realistic line rendering (NPR)method that mimics human sketching of free-form shapes. We use the CNNmodel to process both single- and multi-view sketches. Using our multi-viewframework users progressively complete the shape by sketching in differentviews, generating complete closed shapes. For each new view, the modelingis assisted by partial sketches and depth cues provided by surfaces generatedin earlier views. The partial surfaces are fused into a complete shape usingpredicted confidence levels as weights.We validate our approach, compare it with previous methods and alternativestructures, and evaluate its performance with various modelingtasks. The results demonstrate our method is a new approach for efficientlymodeling freeform shapes with succinct but expressive 2D sketches.
机译:草图绘制提供了直观的用户界面,用于传达自由形状。尽管人类观察者可以轻松地设想他们打算传达的形状,但是通过算法复制该过程需要解决众多的歧义。现有的基于草图的建模方法通过依赖昂贵的用户注释或通过将建模的形状限制为特定的狭窄类别来解决这些歧义。我们提出了一种从稀疏的2D草图中建模通用自由形式3D曲面的方法,该方法通过将卷积神经网络(CNN)合并到草图处理工作流程中来克服这两个限制。鉴于3D曲面的2D草图,我们使用CNN来推断表示深度和法线贴图的方法表面。为了消除歧义,我们引入了一个中间的CNN层,该层对表面的密集曲率方向,流动或表面场进行建模,并生成一个附加的输出置信度图以及深度和法线。流场指导我们后续的表面重建,以改善规则性;置信度图在无监督的情况下进行了测量,从而测量了歧义,并为数据拟合提供了可靠的估计器。为了减少输入草图中的歧义,用户可以通过在笔划的稀疏点和曲率提示处提供可选的深度值来改进其输入。我们的CNN在大型数据集上进行了训练,该数据集是通过使用模仿人类绘制自由形状的草图的非真实感线条渲染(NPR)方法绘制各种3D形状的草图而生成的。我们使用CNNmodel来处理单视图和多视图草图。通过使用我们的多视图框架,用户可以通过在不同视图中绘制草图来逐步完成形状,从而生成完整的闭合形状。对于每个新视图,建模都由早期视图中生成的曲面提供的局部草图和深度提示来辅助。使用预测的置信度水平作为权重将局部曲面融合为完整的形状。我们验证我们的方法,将其与以前的方法和替代结构进行比较,并通过各种建模任务评估其性能。结果表明,我们的方法是一种有效的,具有简洁而富有表现力的2D草图的自由形状建模的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号