首页> 外文期刊>ACM Transactions on Graphics >Crowd Space: A Predictive Crowd Analysis Technique
【24h】

Crowd Space: A Predictive Crowd Analysis Technique

机译:人群空间:一种预测性人群分析技术

获取原文
获取原文并翻译 | 示例

摘要

Over the last two decades there has been a proliferation of methods for simulating crowds of humans. As the number of different methods and their complexity increases, it becomes increasingly unrealistic to expect researchers and users to keep up with all the possible options and trade-offs. We therefore see the need for tools that can facilitate both domain experts and non-expert users of crowd simulation in making high-level decisions about the best simulation methods to use in different scenarios. In this paper, we leverage trajectory data from human crowds and machine learning techniques to learn a manifold which captures representative local navigation scenarios that humans encounter in real life. We show the applicability of this manifold in crowd research, including analyzing trends in simulation accuracy, and creating automated systems to assist in choosing an appropriate simulation method for a given scenario.
机译:在过去的二十年中,出现了许多模拟人群的方法。随着不同方法的数量及其复杂性的增加,期望研究人员和用户跟上所有可能的选择和折衷变得越来越不现实。因此,我们看到需要可以帮助领域专家和人群模拟的非专业用户的工具做出高层决定,以决定在不同情况下使用的最佳模拟方法。在本文中,我们利用来自人群的轨迹数据和机器学习技术来学习多种流形,这些流形捕获了人类在现实生活中遇到的代表性局部导航场景。我们展示了该方法在人群研究中的适用性,包括分析模拟准确性的趋势,以及创建自动化系统以帮助针对给定场景选择合适的模拟方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号