首页> 外文期刊>ACM Transactions on Graphics >Aerial Path Planning for Urban Scene Reconstruction: A Continuous Optimization Method and Benchmark
【24h】

Aerial Path Planning for Urban Scene Reconstruction: A Continuous Optimization Method and Benchmark

机译:城市景观重建的空中路径规划:一种连续优化方法和基准

获取原文
获取原文并翻译 | 示例

摘要

Small unmanned aerial vehicles (UAVs) are ideal capturing devices for highresolution urban 3D reconstructions using multi-view stereo. Nevertheless, practical considerations such as safety usually mean that access to the scan target is often only available for a short amount of time, especially in urban environments. It therefore becomes crucial to perform both view and path planning to minimize flight time while ensuring complete and accurate reconstructions. In this work, we address the challenge of automatic view and path planning for UAV-based aerial imaging with the goal of urban reconstruction from multi-view stereo. To this end, we develop a novel continuous optimization approach using heuristics for multi-view stereo reconstruction quality and apply it to the problem of path planning. Even for large scan areas, our method generates paths in only a few minutes, and is therefore ideally suited for deployment in the field. To evaluate our method, we introduce and describe a detailed benchmark dataset for UAV path planning in urban environments which can also be used to evaluate future research efforts on this topic. Using this dataset and both synthetic and real data, we demonstrate survey-grade urban reconstructions with ground resolutions of 1 cm or better on large areas (30 000m~2).
机译:小型无人机(UAV)是使用多视图立体声进行高分辨率城市3D重建的理想捕获设备。尽管如此,诸如安全性之类的实际考虑通常意味着通常仅在短时间内可以访问扫描目标,特别是在城市环境中。因此,在确保完整和准确的重建的同时执行视图和路径规划以最小化飞行时间变得至关重要。在这项工作中,我们以基于多视角立体的城市重建为目标,解决了基于无人机的空中成像自动视图和路径规划的挑战。为此,我们使用启发式方法开发了一种新颖的连续优化方法,以实现多视图立体重建质量,并将其应用于路径规划问题。即使对于较大的扫描区域,我们的方法也只需几分钟即可生成路径,因此非常适合在现场部署。为了评估我们的方法,我们介绍并描述了用于城市环境中无人机路径规划的详细基准数据集,该基准数据集还可用于评估有关该主题的未来研究成果。使用此数据集以及综合数据和真实数据,我们演示了在大面积(30,000 m〜2)上地面分辨率为1 cm或更佳的调查级城市重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号