首页> 外文期刊>ACM Transactions on Graphics >Deep Convolutional Reconstruction For Gradient-Domain Rendering
【24h】

Deep Convolutional Reconstruction For Gradient-Domain Rendering

机译:用于梯度域渲染的深度卷积重构

获取原文
获取原文并翻译 | 示例

摘要

It has been shown that rendering in the gradient domain, i.e., estimating finite difference gradients of image intensity using correlated samples, and combining them with direct estimates of pixel intensities by solving a screened Poisson problem, often offers fundamental benefits over merely sampling pixel intensities. The reasons can be traced to the frequency content of the light transport integrand and its interplay with the gradient operator. However, while they often yield state of the art performance among algorithms that are based on Monte Carlo sampling alone, gradient-domain rendering algorithms have, until now, not generally been competitive with techniques that combine Monte Carlo sampling with post-hoc noise removal using sophisticated non-linear filtering.Drawing on the power of modern convolutional neural networks, we propose a novel reconstruction method for gradient-domain rendering. Our technique replaces the screened Poisson solver of previous gradient-domain techniques with a novel dense variant of the U-Net autoencoder, additionally taking auxiliary feature buffers as inputs. We optimize our network to minimize a perceptual image distance metric calibrated to the human visual system. Our results significantly improve the quality obtained from gradient-domain path tracing, allowing it to overtake state-of-the-art comparison techniques that denoise traditional Monte Carlo samplings. In particular, we observe that the correlated gradient samples - that offer information about the smoothness of the integrand unavailable in standard Monte Carlo sampling - notably improve image quality compared to an equally powerful neural model that does not make use of gradient samples.
机译:已经显示出在梯度域中的渲染,即,使用相关样本来估计图像强度的有限差异梯度,并且通过解决屏蔽的泊松问题,将它们与像素强度的直接估计结合起来,通常比仅对像素强度进行采样提供基本的好处。原因可以追溯到光传输被积物的频率含量及其与梯度算子的相互作用。但是,尽管它们经常在仅基于蒙特卡洛采样的算法中产生最先进的性能,但到目前为止,梯度域渲染算法通常与将蒙特卡洛采样与使用复杂的非线性滤波。利用现代卷积神经网络的强大功能,我们提出了一种新颖的梯度域渲染重构方法。我们的技术用U-Net自动编码器的新型密集变体替换了以前的梯度域技术的屏蔽Poisson求解器,此外还采用了辅助特征缓冲区作为输入。我们优化我们的网络,以最小化已校准到人类视觉系统的感知图像距离度量。我们的结果显着提高了从梯度域路径跟踪获得的质量,从而使其超过了对传统蒙特卡洛采样进行消噪的最新比较技术。特别是,我们观察到相关的梯度样本-提供有关标准Monte Carlo采样中不可用的被积物的平滑度的信息-与不使用梯度样本的同等强大的神经模型相比,显着提高了图像质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号