首页> 外文OA文献 >Advanced Techniques in Gradient-Domain Rendering
【2h】

Advanced Techniques in Gradient-Domain Rendering

机译:渐变域渲染的高级技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rendering realistic images requires solving the notoriously hard physically-based light transport problem. Almost all of the state-of-the-art physically-based rendering methods use Monte-Carlo sampling of the light paths contributing to the image. These methods suffer from variance until convergence. Depending on the scene, an impracticable amount of time might be required to get a clean image. A recently developed method called gradient-domain Metropolis light transport mitigates this problem. It first samples the image-space finite differences of paths alongside the paths themselves and then reconstructs a clean image from the sampled data by applying a screened Poisson reconstruction. The method exploits two properties: first, the gradients of natural images are usually much sparser than the image itself, thus sampling efforts can be concentrated in fewer regions of the path space. Second, sampling finite differences allows using correlated sampling in rendering, which can strongly reduce noise in the finite differences. Both properties combined lead to dramatical speed-ups compared to classical (Markov-chain) Monte-Carlo rendering methods. ududThis dissertation builds up on the aforementioned gradient-domain Metropolis light transport and proposes a number of improvements and generalizations. We improve the sampling by replacing finite differences by arbitrary differences and by combining different sampling strategies in an unbiased way. We also generalize the method to non-MLT rendering methods like bidirectional path tracing. Further, we develop an algorithm that regularizes the screened Poisson reconstruction by using auxiliary scene information in order to increase image quality. This leads to the first method that combines gradient-domain rendering with classical image-space denoising. And finally, we incorporate temporal finite differences in gradient-domain rendering in order to create stable animations, thus making gradient-domain rendering an even more appealing option for production rendering.
机译:渲染逼真的图像需要解决众所周知的很难进行的基于物理的光传输问题。几乎所有基于物理的最先进渲染方法都使用对图像有贡献的光路的蒙特卡洛采样。这些方法一直存在偏差,直到收敛为止。根据场景,可能需要很长的时间才能获得清晰的图像。最近开发的一种称为梯度域大都市光传输的方法可以缓解此问题。它首先在路径本身旁边对路径的图像空间有限差异进行采样,然后通过应用屏蔽的泊松重建从采样数据中重建出清晰的图像。该方法具有两个特性:首先,自然图像的梯度通常比图像本身稀疏得多,因此采样工作可以集中在路径空间的较少区域。其次,对有限差分进行采样可以在渲染中使用相关采样,从而可以大大减少有限差分中的噪声。与经典(马尔可夫链)蒙特卡洛渲染方法相比,这两种特性共同导致了戏剧性的加速。 ud ud本论文建立在上述梯度域大都市光传输的基础上,并提出了许多改进和概括。我们通过用任意差代替有限差并以无偏方式组合不同的采样策略来改进采样。我们还将该方法推广到非MLT渲染方法,例如双向路径跟踪。此外,我们开发了一种算法,该算法通过使用辅助场景信息来规范化筛选后的泊松重构,以提高图像质量。这导致了将梯度域渲染与经典图像空间去噪相结合的第一种方法。最后,我们在渐变域渲染中加入了时间有限差异,以创建稳定的动画,从而使渐变域渲染成为用于生产渲染的更具吸引力的选择。

著录项

  • 作者

    Manzi Marco;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号