首页> 外文期刊>ACM Transactions on Graphics >NeuroSkinning: Automatic Skin Binding for Production Characters with Deep Graph Networks
【24h】

NeuroSkinning: Automatic Skin Binding for Production Characters with Deep Graph Networks

机译:NeuroSkinning:使用深图网络自动生成角色的皮肤绑定

获取原文
获取原文并翻译 | 示例

摘要

We present a deep-learning-based method to automatically compute skin weights for skeleton-based deformation of production characters. Given a character mesh and its associated skeleton hierarchy in rest pose, our method constructs a graph for the mesh, each node of which encodes the mesh-skeleton attributes of a vertex. An end-to-end deep graph convolution network is then introduced to learn the mesh-skeleton binding patterns from a set of character models with skin weights painted by artists. The network can be used to predict the skin weight map for a new character model, which describes how the skeleton hierarchy influences the mesh vertices during deformation. Our method is designed to work for non-manifold meshes with multiple disjoint or intersected components, which are common in game production and require complex skeleton hierarchies for animation control. We tested our method on the datasets of two commercial games. Experiments show that the predicted skin weight maps can be readily applied to characters in the production pipeline to generate high-quality deformations.
机译:我们提出了一种基于深度学习的方法来自动计算基于骨骼的生产角色变形的皮肤权重。给定一个角色网格及其在静止姿势下关联的骨架层次,我们的方法将为网格构造一个图形,该图形的每个节点都编码顶点的网格骨架属性。然后引入端到端深图卷积网络,以从一组具有艺术家绘制的皮肤权重的角色模型中学习网格骨骼绑定模式。该网络可用于预测新角色模型的皮肤权重图,该角色模型描述了骨骼层次在变形过程中如何影响网格顶点。我们的方法旨在用于具有多个不相交或相交的组件的非流形网格,这在游戏制作中很常见,并且需要复杂的骨架层次进行动画控制。我们在两个商业游戏的数据集上测试了我们的方法。实验表明,预测的皮肤重量图可以轻松应用于生产管道中的角色,以生成高质量的变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号