...
首页> 外文期刊>ACM Transactions on Graphics >Learning to Fly: Computational Controller Design for Hybrid UAVs with Reinforcement Learning
【24h】

Learning to Fly: Computational Controller Design for Hybrid UAVs with Reinforcement Learning

机译:学习飞行:具有强化学习功能的混合无人机的计算控制器设计

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid unmanned aerial vehicles (UAV) combine advantages of multicopters and fixed-wing planes: vertical take-off, landing, and low energy use. However, hybrid UAVs are rarely used because controller design is challenging due to its complex, mixed dynamics. In this paper, we propose a method to automate this design process by training a mode-free, model-agnostic neural network controller for hybrid UAVs. We present a neural network controller design with a novel error convolution input trained by reinforcement learning. Our controller exhibits two key features: First, it does not distinguish among flying modes, and the same controller structure can be used for copters with various dynamics. Second, our controller works for real models without any additional parameter tuning process, closing the gap between virtual simulation and real fabrication. We demonstrate the efficacy of the proposed controller both in simulation and in our custom-built hybrid UAVs (Figure 1, 8). The experiments show that the controller is robust to exploit the complex dynamics when both rotors and wings are active in flight tests.
机译:混合动力无人机(UAV)结合了多直升机和固定翼飞机的优势:垂直起飞,着陆和低能耗。但是,混合动力无人机很少使用,因为由于其复杂的混合动力,控制器的设计具有挑战性。在本文中,我们提出了一种通过训练用于混合无人机的无模式,与模型无关的神经网络控制器来自动化该设计过程的方法。我们提出了一种具有通过强化学习训练的新型错误卷积输入的神经网络控制器设计。我们的控制器具有两个关键特性:首先,它不区分飞行模式,并且相同的控制器结构可用于具有各种动态特性的直升机。其次,我们的控制器无需任何其他参数调整过程即可用于实际模型,从而缩小了虚拟仿真与实际制造之间的差距。我们在仿真和我们定制的混合无人机中都证明了所提出的控制器的功效(图1、8)。实验表明,当飞行器中的旋翼和机翼都处于活动状态时,该控制器具有强大的鲁棒性,可以利用复杂的动力学特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号