首页> 外文期刊>ACM Transactions on Graphics >Sphere-Meshes: Shape Approximation using Spherical Quadric Error Metrics
【24h】

Sphere-Meshes: Shape Approximation using Spherical Quadric Error Metrics

机译:球面网格:使用球面二次误差度量的形状近似

获取原文
获取原文并翻译 | 示例

摘要

Shape approximation algorithms aim at computing simple geometric descriptions of dense surface meshes. Many such algorithms are based on mesh decimation techniques, generating coarse triangulations while optimizing for a particular metric which models the distance to the original shape. This approximation scheme is very efficient when enough polygons are allowed for the simplified model. However, as coarser approximations are reached, the intrinsic piecewise linear point interpolation which defines the decimated geometry fails at capturing even simple structures. We claim that when reaching such extreme simplification levels, highly instrumental in shape analysis, the approximating representation should explicitly and progressively model the volumetric extent of the original shape. In this paper, we propose Sphere-Meshes, a new shape representation designed for extreme approximations and substituting a sphere interpolation for the classic point interpolation of surface meshes. From a technical point-of-view, we propose a new shape approximation algorithm, generating a sphere-mesh at a prescribed level of detail from a classical polygon mesh. We also introduce a new metric to guide this approximation, the Spherical Quadric Error Metric in R~4, whose minimizer finds the sphere that best approximates a set of tangent planes in the input and which is sensitive to surface orientation, thus distinguishing naturally between the inside and the outside of an object. We evaluate the performance of our algorithm on a collection of models covering a wide range of topological and geometric structures and compare it against alternate methods. Lastly, we propose an application to deformation control where a sphere-mesh hierarchy is used as a convenient rig for altering the input shape interactively.
机译:形状近似算法旨在计算密集表面网格的简单几何描述。许多此类算法均基于网格抽取技术,可生成粗三角剖分,同时针对对距原始形状的距离进行建模的特定度量进行优化。当简化模型允许有足够的多边形时,这种近似方案非常有效。但是,随着达到更粗略的近似,定义抽取后的几何体的固有分段线性点插值无法捕获甚至简单的结构。我们声称,当达到如此极端的简化水平(在形状分析中非常有用)时,近似表示应显式并逐步建模原始形状的体积范围。在本文中,我们提出了Sphere-Meshes,这是一种新的形状表示形式,用于极端逼近,并将球面插值替换为表面网格的经典点插值。从技术的角度来看,我们提出了一种新的形状近似算法,该算法可以从古典多边形网格中以指定的详细程度生成球体网格。我们还引入了一种新的度量标准来指导这种近似,即R〜4中的球面二次误差度量标准,其极小值找到了最接近输入中切线平面集合并且对表面方向敏感的球体,从而自然区分了对象的内部和外部。我们在涵盖广泛的拓扑和几何结构的模型集合上评估我们算法的性能,并将其与替代方法进行比较。最后,我们提出了一种变形控制的应用程序,其中球面网格层次用作交互更改输入形状的便捷装备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号