首页> 外文期刊>ACM Transactions on Graphics >Creating Consistent Scene Graphs Using a Probabilistic Grammar
【24h】

Creating Consistent Scene Graphs Using a Probabilistic Grammar

机译:使用概率语法创建一致的场景图

获取原文
获取原文并翻译 | 示例

摘要

Growing numbers of 3D scenes in online repositories provide newrnopportunities for data-driven scene understanding, editing, and synthesis.rnDespite the plethora of data now available online, most ofrnit cannot be effectively used for data-driven applications because itrnlacks consistent segmentations, category labels, and/or functionalrngroupings required for co-analysis. In this paper, we develop algorithmsrnthat infer such information via parsing with a probabilisticrngrammar learned from examples. First, given a collection of scenerngraphs with consistent hierarchies and labels, we train a probabilisticrnhierarchical grammar to represent the distributions of shapes,rncardinalities, and spatial relationships of semantic objects withinrnthe collection. Then, we use the learned grammar to parse newrnscenes to assign them segmentations, labels, and hierarchies consistentrnwith the collection. During experiments with these algorithms,rnwe find that: they work effectively for scene graphs for indoorrnscenes commonly found online (bedrooms, classrooms, and libraries);rnthey outperform alternative approaches that consider onlyrnshape similarities and/or spatial relationships without hierarchy;rnthey require relatively small sets of training data; they are robustrnto moderate over-segmentation in the inputs; and, they can robustlyrntransfer labels from one data set to another. As a result, the proposedrnalgorithms can be used to provide consistent hierarchies forrnlarge collections of scenes within the same semantic class.
机译:在线存储库中越来越多的3D场景为数据驱动的场景理解,编辑和综合提供了新的机遇。尽管现在在线上有大量数据,但是大多数丢失的数据都不能有效地用于数据驱动的应用程序,因为它缺少一致的分段,类别标签,和/或共同分析所需的功能分组。在本文中,我们开发了算法,该算法通过使用从示例中学到的概率语法进行解析来推断此类信息。首先,给定具有一致层次结构和标签的场景图集合,我们训练概率层次语法,以表示集合中语义对象的形状,基数和空间关系的分布。然后,我们使用学习的语法来解析新场景,为它们分配与集合一致的分段,标签和层次结构。在使用这些算法进行实验的过程中,我们发现:它们可有效地用于在线常见的室内场景场景图(卧室,教室和图书馆);它们优于仅考虑形状相似性和/或空间关系而没有层次结构的替代方法;它们所需的空间相对较小训练数据集;它们对输入中的过度分割具有鲁棒性;并且,他们可以将标签从一个数据集稳健地转移到另一个数据集。结果,所提出的算法可用于为同一语义类内的大型场景集合提供一致的层次结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号