首页> 外文期刊>ACM Transactions on Graphics >DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning
【24h】

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning

机译:DeepLo​​co:使用分层深度强化学习的动态运动技能

获取原文
获取原文并翻译 | 示例

摘要

Learning physics-based locomotion skills is a diu001ccult problem, leading to solutions that typically exploit prior knowledge of various forms. In this paper we aim to learn a variety of environment-aware locomotion skills with a limited amount of prior knowledge. We adopt a two-level hierarchical control framework. First, low-level controllers are learned that operate at a fine timescale and which achieve robust walking gaits that satisfy stepping-target and style objectives. Second, high-level controllers are then learned which plan at the timescale of steps by invoking desired step targets for the low-level controller. The high-level controller makes decisions directly based on high-dimensional inputs, including terrain maps or other suitable representations of the surroundings. Both levels of the control policy are trained using deep reinforcement learning. Results are demonstrated on a simulated 3D biped. Low-level controllers are learned for a variety of motion styles and demonstrate robustness with respect to forcebased disturbances, terrain variations, and style interpolation. High-level controllers are demonstrated that are capable of following trails through terrains, dribbling a soccer ball towards a target location, and navigating through static or dynamic obstacles.
机译:学习基于物理学的运动技能是一个难题,导致通常会利用各种形式的先验知识的解决方案。本文旨在通过有限的先验知识来学习各种环境感知的移动技能。我们采用两级分层控制框架。首先,学习低级控制器,它们可以在良好的时间范围内运行,并且可以实现满足步进目标和样式目标的健壮步行步态。其次,通过调用低级控制器的所需步骤目标来学习高级控制器,该高级控制器在步骤的时标上进行计划。高级控制器直接基于高维输入(包括地形图或周围环境的其他合适表示)做出决策。控制策略的两个级别都使用深度强化学习来训练。结果在模拟的3D两足动物上得到证明。学习了用于各种运动样式的低级控制器,并针对基于力的干扰,地形变化和样式插值展示了鲁棒性。演示了高级控制器,该控制器能够跟踪穿越地形的步伐,将足球运向目标位置以及通过静态或动态障碍物进行导航。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号