首页> 外文期刊>ACM transactions on database systems >Adaptive Asynchronous Parallelization of Graph Algorithms
【24h】

Adaptive Asynchronous Parallelization of Graph Algorithms

机译:图形算法的自适应异步并行化

获取原文
获取原文并翻译 | 示例

摘要

This article proposes an Adaptive Asynchronous Parallel (AAP) model for graph computations. As opposed to Bulk Synchronous Parallel (BSP) and Asynchronous Parallel (AP) models, AAP reduces both stragglers and stale computations by dynamically adjusting relative progress of workers. We show that BSP, AP, and Stale Synchronous Parallel model (SSP) are special cases of AAP. Better yet, AAP optimizes parallel processing by adaptively switching among these models at different stages of a single execution. Moreover, employing the programming model of GRAPE, AAP aims to parallelize existing sequential algorithms based on simultaneous fixpoint computation with partial and incremental evaluation. Under a monotone condition, AAP guarantees to converge at correct answers if the sequential algorithms are correct. Furthermore, we show that AAP can optimally simulate MapReduce, PRAM, BSP, AP, and SSP. Using real-life and synthetic graphs, we experimentally verify that AAP outperforms BSP, AP, and SSP for a variety of graph computations.
机译:本文提出了一种用于图形计算的自适应异步并行(AAP)模型。与批量同步并行(BSP)和异步并行(AP)型号相反,AAP通过动态调整工人的相对进展来减少跨轨迹和陈旧计算。我们显示BSP,AP和陈旧的同步并行模型(SSP)是AAP的特殊情况。更好的是,AAP通过在单个执行的不同阶段自适应地切换这些模型之间优化并行处理。此外,采用葡萄编程模型,AAP旨在基于具有部分和增量评估的同时固定点计算并行化现有的连续算法。在单调条件下,AAP如果顺序算法正确,则保证以正确的答案收敛。此外,我们表明AAP可以最佳地模拟MapReduce,PRAM,BSP,AP和SSP。使用现实生活和合成图,我们通过实验验证AAP优于BSP,AP和SSP各种图形计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号