首页> 外文期刊>ACM transactions on database systems >Index-Driven Similarity Search in Metric Spaces
【24h】

Index-Driven Similarity Search in Metric Spaces

机译:度量空间中的索引驱动相似性搜索

获取原文

摘要

Similarity search is a very important operation in multimedia databases and other database applications involving complex objects, and involves finding objects in a data set S similar to a query object q, based on some similarity measure. In this article, we focus on methods for similarity search that make the general assumption that similarity is represented with a distance metric d. Existing methods for handling similarity search in this setting typically fall into one of two classes. The first directly indexes the objects based on distances (distance-based indexing), while the second is based on mapping to a vector space (mapping-based approach). The main part of this article is dedicated to a survey of distance-based indexing methods, but we also briefly outline how search occurs in mapping-based methods. We also present a general framework for performing search based on distances, and present algorithms for common types of queries that operate on an arbitrary "search hierarchy." These algorithms can be applied on each of the methods presented, provided a suitable search hierarchy is defined.
机译:在多媒体数据库和涉及复杂对象的其他数据库应用程序中,相似性搜索是非常重要的操作,并且涉及基于某种相似性度量在数据集S中查找与查询对象q类似的对象。在本文中,我们将重点放在相似性搜索的方法上,这些方法通常假设相似性用距离度量d表示。在这种情况下,用于处理相似性搜索的现有方法通常属于两类之一。第一个基于距离直接索引对象(基于距离的索引),第二个基于到向量空间的映射(基于映射的方法)。本文的主要部分致力于调查基于距离的索引方法,但我们也简要概述了如何在基于映射的方法中进行搜索。我们还提出了一种用于基于距离执行搜索的通用框架,并提出了针对在任意“搜索层次”上运行的常见查询类型的算法。只要定义了合适的搜索层次,这些算法就可以应用于所介绍的每种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号