首页> 外文期刊>ACM transactions on database systems >Self-Tuning Cost Modeling of User-Defined Functions in an Object-Relational DBMS
【24h】

Self-Tuning Cost Modeling of User-Defined Functions in an Object-Relational DBMS

机译:对象关系型DBMS中用户定义功能的自调整成本建模

获取原文
获取原文并翻译 | 示例

摘要

Query optimizers in object-relational database management systems typically require users to provide the execution cost models of user-defined functions (UDFs). Despite this need, however, there has been little work done to provide such a model. The existing approaches are static in that they require users to train the model a priori with pregenerated UDF execution cost data. Static approaches can not adapt to changing UDF execution patterns and thus degrade in accuracy when the UDF executions used for generating training data do not reflect the patterns of those performed during operation. This article proposes a new approach based on the recent trend of self-tuning DBMS by which the cost model is maintained dynamically and incrementally as UDFs are being executed online. In the context of UDF cost modeling, our approach faces a number of challenges, that is, it should work with limited memory, work with limited computation time, and adjust to the fluctuations in the execution costs (e.g., caching effect). In this article, we first provide a set of guidelines for developing techniques that meet these challenges, while achieving accurate and fast cost prediction with small overheads. Then, we present two concrete techniques developed under the guidelines. One is an instance-based technique based on the conventional k -nearest neighbor (KNN) technique which uses a multidimensional index like the R~*-tree. The other is a summary-based technique which uses the quadtree to store summary values at multiple resolutions. We have performed extensive performance evaluations comparing these two techniques against existing histogram-based techniques and the KNN technique, using both real and synthetic UDFs/data sets. The results show our techniques provide better performance in most situations considered.
机译:对象关系数据库管理系统中的查询优化器通常要求用户提供用户定义函数(UDF)的执行成本模型。尽管有这种需求,但是提供这种模型的工作很少。现有方法是静态的,因为它们要求用户使用预先生成的UDF执行成本数据先验地训练模型。静态方法无法适应不断变化的UDF执行模式,因此当用于生成训练数据的UDF执行不反映操作期间执行的那些模式时,准确性会降低。本文根据自调整DBMS的最新趋势提出了一种新方法,通过该方法,可以在线执行UDF时动态且递增地维护成本模型。在UDF成本建模的情况下,我们的方法面临许多挑战,即它应在有限的内存下工作,在有限的计算时间下工作以及适应执行成本的波动(例如缓存效果)。在本文中,我们首先提供了一套指南,用于开发能够应对这些挑战的技术,同时以较小的开销实现准确,快速的成本预测。然后,我们介绍了根据指南开发的两种具体技术。一种是基于实例的技术,其基于常规的k最近邻(KNN)技术,该技术使用像R〜*树之类的多维索引。另一种是基于摘要的技术,该技术使用四叉树以多种分辨率存储摘要值。我们已经进行了广泛的性能评估,将这两种技术与现有的基于直方图的技术和KNN技术进行了比较,使用了真实的和合成的UDF /数据集。结果表明,在大多数情况下,我们的技术都可以提供更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号