首页> 外文期刊>ACM transactions on database systems >Towards a Painless Index for Spatial Objects
【24h】

Towards a Painless Index for Spatial Objects

机译:迈向空间对象的无痛索引

获取原文
获取原文并翻译 | 示例

摘要

Conventional spatial indexes, represented by the R-tree, employ multidimensional tree structures that are complicated and require enormous efforts to implement in a full-fledged database management system (DBMS). An alternative approach for supporting spatial queries is mapping-based indexing, which maps both data and queries into a one-dimensional space such that data can be indexed and queries can be processed through a one-dimensional indexing structure such as the B~+-tree. Mapping-based indexing requires implementing only a few mapping functions, incurring much less effort in implementation compared to conventional spatial index structures. Yet, a major concern about using mapping-based indexes is their lower efficiency than conventional tree structures. In this article, we propose a mapping-based spatial indexing scheme called Size Separation Indexing (SSI). SSI is equipped with a suite of techniques including size separation, data distribution transformation, and more efficient mapping algorithms. These techniques overcome the drawbacks of existing mapping-based indexes and significantly improve the efficiency of query processing. We show through extensive experiments that, for window queries on spatial objects with nonzero extents, SSI has two orders of magnitude better performance than existing mapping-based indexes and competitive performance to the R-tree as a standalone implementation. We have also implemented SSI on top of two off-the-shelf DBMSs, PostgreSQL and a commercial platform, both having R-tree implementation. In this case, SSI is up to two orders of magnitude faster than their provided spatial indexes. Therefore, we achieve a spatial index more efficient than the R-tree in a DBMS implementation that is at the same time easy to implement. This result may upset a common perception that has existed for a long time in this area that the R-tree is the best choice for indexing spatial objects.
机译:以R树为代表的常规空间索引采用了复杂的多维树结构,需要大量的精力才能在成熟的数据库管理系统(DBMS)中实现。支持空间查询的另一种方法是基于映射的索引,该方法将数据和查询都映射到一维空间中,以便可以对数据进行索引,并且可以通过一维索引结构(例如B〜+-)来处理查询。树。基于映射的索引仅需要实现一些映射功能,与传统的空间索引结构相比,实现起来所需的工作量更少。但是,使用基于映射的索引的主要问题是其效率比常规树结构低。在本文中,我们提出了一种称为大小分离索引(SSI)的基于映射的空间索引方案。 SSI配备了一套技术,包括大小分离,数据分布转换和更有效的映射算法。这些技术克服了现有基于映射的索引的缺点,并显着提高了查询处理的效率。我们通过广泛的实验表明,对于具有非零范围的空间对象的窗口查询,SSI的性能比现有的基于映射的索引要好两个数量级,并且作为独立实现的R树具有竞争性。我们还在两个现成的DBMS(PostgreSQL和一个商业平台)上实现了SSI,它们都具有R-tree实现。在这种情况下,SSI比其提供的空间索引快两个数量级。因此,在易于实现的DBMS实现中,我们实现了比R树更有效的空间索引。此结果可能会破坏在该区域已存在很长时间的普遍看法,即R树是索引空间对象的最佳选择。

著录项

  • 来源
    《ACM transactions on database systems》 |2014年第3期|19.1-19.42|共42页
  • 作者单位

    Department of Computing and Information Systems, University of Melbourne, VIC 3010, Australia;

    Department of Computing and Information Systems, University of Melbourne, VIC 3010, Australia;

    Department of Computing and Information Systems, University of Melbourne, VIC 3010, Australia;

    Department of Computing and Information Systems, University of Melbourne, VIC 3010, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spatial databases; mapping-based indexing; window queries; spacefilling curves;

    机译:空间数据库;基于映射的索引;窗口查询;填充曲线;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号